BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evaluating the Community Land Model (CLM4.5) at a Coniferous Forest Site in Northwestern United States Using Flux and Carbon-Isotope Measurements
Published: September 28, 2017
Posted: November 21, 2017

Model ability to simulate the observed energy and carbon fluxes, carbon stocks, and ecosystem response to water stress is investigated.

The Science   
Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The study's goal was to evaluate the performance of Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer.

The Impact
CLM4.5 was able to reasonably simulate the observations at Wind River after significant calibration of parameters. While most of the adjustments were site specific, the adjustment of the slope of the leaf stomatal conductance equation aligned with results from other studies at different coniferous forest sites, suggesting that CLM4.5 could benefit from a revised default value. The results also demonstrate that carbon isotopes can expose structural weaknesses in CLM4.5 and provide a key constraint that may guide future model development.

Summary
U.S. Department of Energy (DOE)–supported scientists evaluated CLM4.5 against observations at an old-growth coniferous forest site that is subjected to water stress each summer. They found that, after calibration, CLM4.5 was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress (i.e., response of canopy conductance to atmospheric vapor pressure deficit and soil water content). The calibration of the slope parameter in the Ball-Berry leaf stomatal conductance model aligned with other studies, suggesting that CLM4.5 could benefit from a revised value of 6, rather than the default value of 9, for needleleaf evergreen temperate forests. This study demonstrates that carbon isotope data can be used to constrain stomatal conductance and intrinsic water use efficiency in CLM4.5, as an alternative to eddy covariance flux measurements. It also demonstrates that carbon isotopes can expose structural weaknesses in the model and provide a key constraint that may guide future model development.

Contacts
BER Program Managers
Daniel Stover
Terrestrial Ecosystem Science, SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

Dorothy Koch
SC-23.1
Dorothy.koch@science.doe.gov (301-903-0105)

Principal Investigator
James Ehleringer
University of Utah, Department of Biology
Salt Lake City, Utah 84112-0840
jim.ehleringer@utah.edu (801-581-7623)

Funding
This research was supported by the Terrestrial Ecosystem Science program (TES) of the Office of Biological and Environmental Research (BER), within the U.S. Department of Energy (DOE) Office of Science, under award number DE-SC0010624. BMR and DRB were supported by BER's TES under award number DE-SC0010625. PET was supported by BER's Accelerated Climate Modeling for Energy (ACME) project. We acknowledge the Wind River Field Station AmeriFlux site (US-Wrc, principal investigators: Kenneth Bible, Sonia Wharton) for its data records. Funding for AmeriFlux data resources was provided by the DOE Office of Science. Data and logistical support were also provided by the U.S. Forest Service Pacific Northwest Research Station.

Publications
Duarte, H.F., Raczka, B.M., Ricciuto, D.M., Lin, J.C., Koven, C.D., Thornton, P.E., Bowling, D.R., Lai, C.-T., Bible, K.J. & Ehleringer, J.R. "Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements." Biogeosciences 14(18), 4315–4340 (2017). [DOI:10.5194/bg-14-4315-2017]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Earth and Environment Systems Data Management
  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)