U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights
Terrestrial Ecosystem Science Program


Measuring Photosynthesis via the Glow of Plants
Published: October 13, 2017
Posted: November 21, 2017

Novel observations suggest a great potential of measuring global gross primary production via solar-induced fluorescence.

The Science
When energized by photons of sunlight, chlorophyll molecules in plant leaves emit a faint red light — Solar-Induced Fluorescence (SIF). SIF originates directly from the core of the photosynthetic machinery and is produced concurrently with carbon fixation. Orbiting Carbon Observatory-2 (OCO-2) is capable of monitoring SIF at high spatial resolution. After validating OCO-2’s SIF measurements against ground measurements, the team related OCO-2 SIF to gross primary production (GPP) estimated from AmeriFlux sites under the OCO-2’s orbital tracks. A significant linear relationship is obtained between these two variables across different vegetation types.

The Impact
Photosynthesis is the foundation of life and civilization on Earth. Yet our current ability to measure photosynthesis at large scales is extremely limited. The team shows that SIF is a direct proxy of photosynthesis and the relationship is consistent across biomes. This research opens up a new direction for photosynthesis observations at multiple scales. It also shows how ground-based observations such as those from AmeriFlux can be integrated with satellite remote sensing to advance photosynthesis research at local, regional, and global scales. 

Summary
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Space-borne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.

Contacts
(BER PM)

Daniel Stover
SC-23.1,
Daniel.Stover@science.doe.gov
(301-903-0289)

(PI Contact)
Lianhong Gu
Distinguished Scientist
Oak Ridge National Laboratory, Oak Ridge, TN
lianhong-gu@ornl.gov / 1-865-241-5925

Jeff Wood
Assistant Research Professor
University of Missouri, MO
woodjd@missouri.edu/1-573-883-3295 (PI)

Funding
The U. S. National Aeronautics and Space Administration (NASA); The U. S. Department of Energy Biological and Environmental Research; The Academy of Finland; The European Union.

Publications
Y. Sun et al. 2017. “OCO-2 Advances Photosynthesis Observation from Space via Solar-Induced Chlorophyll Fluorescence,” Science 358, 189. 10.1126/science.aam5747.

Related Links
http://science.sciencemag.org/content/358/6360/eaam5747

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. Search all BER Highlights

Recent TES Highlights

Sep 18, 2018
Vegetation Demographics in Earth System Models: A Review of Progress and Priorities
An assessment of current approaches to including individual plant dynamics in ESMs and the need for [more...]

Sep 11, 2018
Crown Damage and the Mortality of Tropical Trees
A study on crown damage, growth, and survival in a tropical forest in Borneo The Sciencemore...]

Aug 15, 2018
Warmer Temperatures Lengthen Growing Season, Increase Plants’ Vulnerability to Frost
Experimental warming treatments show how peatland forests may respond to future environmental chang [more...]

Aug 15, 2018
Using Isotopic Measurements to Diagnose Performance of Carbon Dynamics in Terrestrial Vegetation Models
Measurements of carbon-14 in plant tissues help to reduce uncertainties in predictions of an ecosys [more...]

Aug 14, 2018
Controls on Nitrogen Availability in the Arctic Tundra
Hydrological changes are key to determining nutrient cycling responses in complex polygonal tundra [more...]