U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Measuring Photosynthesis via the Glow of Plants
Published: October 13, 2017
Posted: November 21, 2017

Novel observations suggest a great potential of measuring global gross primary production via solar-induced fluorescence.

The Science
When energized by photons of sunlight, chlorophyll molecules in plant leaves emit a faint red light — Solar-Induced Fluorescence (SIF). SIF originates directly from the core of the photosynthetic machinery and is produced concurrently with carbon fixation. Orbiting Carbon Observatory-2 (OCO-2) is capable of monitoring SIF at high spatial resolution. After validating OCO-2’s SIF measurements against ground measurements, the team related OCO-2 SIF to gross primary production (GPP) estimated from AmeriFlux sites under the OCO-2’s orbital tracks. A significant linear relationship is obtained between these two variables across different vegetation types.

The Impact
Photosynthesis is the foundation of life and civilization on Earth. Yet our current ability to measure photosynthesis at large scales is extremely limited. The team shows that SIF is a direct proxy of photosynthesis and the relationship is consistent across biomes. This research opens up a new direction for photosynthesis observations at multiple scales. It also shows how ground-based observations such as those from AmeriFlux can be integrated with satellite remote sensing to advance photosynthesis research at local, regional, and global scales. 

Summary
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Space-borne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.

Contacts
(BER PM)

Daniel Stover
SC-23.1,
Daniel.Stover@science.doe.gov
(301-903-0289)

(PI Contact)
Lianhong Gu
Distinguished Scientist
Oak Ridge National Laboratory, Oak Ridge, TN
lianhong-gu@ornl.gov / 1-865-241-5925

Jeff Wood
Assistant Research Professor
University of Missouri, MO
woodjd@missouri.edu/1-573-883-3295 (PI)

Funding
The U. S. National Aeronautics and Space Administration (NASA); The U. S. Department of Energy Biological and Environmental Research; The Academy of Finland; The European Union.

Publications
Y. Sun et al. 2017. “OCO-2 Advances Photosynthesis Observation from Space via Solar-Induced Chlorophyll Fluorescence,” Science 358, 189. 10.1126/science.aam5747.

Related Links
http://science.sciencemag.org/content/358/6360/eaam5747

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)