U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights



Measuring Photosynthesis via the Glow of Plants
Published: October 13, 2017
Posted: November 21, 2017

Novel observations suggest a great potential of measuring global gross primary production via solar-induced fluorescence.

The Science
When energized by photons of sunlight, chlorophyll molecules in plant leaves emit a faint red light — Solar-Induced Fluorescence (SIF). SIF originates directly from the core of the photosynthetic machinery and is produced concurrently with carbon fixation. Orbiting Carbon Observatory-2 (OCO-2) is capable of monitoring SIF at high spatial resolution. After validating OCO-2’s SIF measurements against ground measurements, the team related OCO-2 SIF to gross primary production (GPP) estimated from AmeriFlux sites under the OCO-2’s orbital tracks. A significant linear relationship is obtained between these two variables across different vegetation types.

The Impact
Photosynthesis is the foundation of life and civilization on Earth. Yet our current ability to measure photosynthesis at large scales is extremely limited. The team shows that SIF is a direct proxy of photosynthesis and the relationship is consistent across biomes. This research opens up a new direction for photosynthesis observations at multiple scales. It also shows how ground-based observations such as those from AmeriFlux can be integrated with satellite remote sensing to advance photosynthesis research at local, regional, and global scales. 

Summary
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Space-borne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics.

Contacts
(BER PM)

Daniel Stover
SC-23.1,
Daniel.Stover@science.doe.gov
(301-903-0289)

(PI Contact)
Lianhong Gu
Distinguished Scientist
Oak Ridge National Laboratory, Oak Ridge, TN
lianhong-gu@ornl.gov / 1-865-241-5925

Jeff Wood
Assistant Research Professor
University of Missouri, MO
woodjd@missouri.edu/1-573-883-3295 (PI)

Funding
The U. S. National Aeronautics and Space Administration (NASA); The U. S. Department of Energy Biological and Environmental Research; The Academy of Finland; The European Union.

Publications
Y. Sun et al. 2017. “OCO-2 Advances Photosynthesis Observation from Space via Solar-Induced Chlorophyll Fluorescence,” Science 358, 189. 10.1126/science.aam5747.

Related Links
http://science.sciencemag.org/content/358/6360/eaam5747

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Biosequestration
  • Cross-Cutting: Scientific Literature
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Nov 01, 2017
Electrical and Seismic Response of Saline Permafrost Soil During Freeze-Thaw Transition
The Science This study demonstrated the mechanical and electrical resp [more...]

Nov 01, 2017
Rapid Characterization of Northern Cold-Region Soil Organic Matter
Infrared spectroscopy discriminated variations in soil properties and extent of organic matter d [more...]

Oct 13, 2017
Measuring Photosynthesis via the Glow of Plants
Novel observations suggest a great potential of measuring global gross primary production via so [more...]

Oct 05, 2017
Networking Science to Improve Soil Organic Matter Management Opportunities
A perspective from the International Soil Carbon Network. The Science [more...]

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]