U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Assessing a New Clue to How Much Carbon Plants Take Up
Published: July 05, 2017
Posted: November 21, 2017

Tracking the carbonyl sulfide signal could open a new window into the carbon cycle.

The Science
Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. In response, atmospheric scientists, biogeochemists, and oceanographers have proposed measuring a gas called carbonyl sulfide (COS) to help quantify the contribution that photosynthesis makes to carbon uptake.

The Impact
Photosynthesis is a key climate forcing process in the terrestrial biosphere. It removes CO2 from the atmosphere and stores carbon in plants, slowing the rate of climate change. Measurements of atmospheric COS provide the first global scale estimates of this carbon-climate feedback.

Ten years ago, scientists discovered a massive and persistent biosphere signal in atmospheric COS measurements. In these data, COS and CO2 levels follow a similar seasonal pattern, but the COS signal is much stronger over continental regions, suggesting that the terrestrial biosphere is a sink for COS. The remarkable discovery led scientists to wonder: Could COS be used as a tracer for carbon uptake?  An explosive growth in COS studies followed as scientists attempted to answer this question, including a COS record from the present to the Last Glacial Maximum, satellite-based maps of the dynamics of COS in the global atmosphere, and measurements of ecosystem fluxes of COS.


Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
J. Elliott Campbell
UC Santa Cruz


Campbell, J. Elliott, et al. 2017. "Assessing a New Clue to How Much Carbon Plants Take Up." Eos, 98, 24-29. 10.1029/2017EO075313.

Related Links

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)