BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Assessing a New Clue to How Much Carbon Plants Take Up
Published: July 05, 2017
Posted: November 21, 2017

Tracking the carbonyl sulfide signal could open a new window into the carbon cycle.

The Science  
Current climate models disagree on how much carbon dioxide (CO2) land ecosystems take up for photosynthesis. In response, atmospheric scientists, biogeochemists, and oceanographers have proposed measuring a gas called carbonyl sulfide (COS) to help quantify the contribution that photosynthesis makes to carbon uptake.

The Impact
Photosynthesis is a key climate forcing process in the terrestrial biosphere. It removes CO2 from the atmosphere and stores carbon in plants, slowing the rate of climate change. Measurements of atmospheric COS provide the first global-scale estimates of this carbon-climate feedback.

Ten years ago, scientists discovered a massive and persistent biosphere signal in atmospheric COS measurements. In these data, COS and CO2 levels follow a similar seasonal pattern, but the COS signal is much stronger over continental regions, suggesting that the terrestrial biosphere is a sink for COS. The remarkable discovery led scientists to wonder: Could COS be used as a tracer for carbon uptake? An explosive growth in COS studies followed as scientists attempted to answer this question, including a COS record from the present to the Last Glacial Maximum, satellite-based maps of the dynamics of COS in the global atmosphere, and measurements of ecosystem fluxes of COS.

BER Program Manager
Daniel Stover
SC-23.1 (301-903-0289)

Principal Investigator
J. Elliott Campbell
UC Santa Cruz

Terrestrial Ecosystem Science program of the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science, under Contract No. DE-SC0011999.

Campbell, J.E., et al. "Assessing a new clue to how much carbon plants take up." Eos 98(10), 24–29 (2017). [DOI:10.1029/2017EO075313].

Related Links

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)