Terrestrial Ecosystem Science. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Terrestrial Ecosystem Science Program



Electrical and Seismic Response of Saline Permafrost Soil During Freeze-Thaw Transition
Published: November 01, 2017
Posted: November 21, 2017

The Science
This study demonstrated the mechanical and electrical responses of Arctic saline permafrost during freeze-thaw processes, and suggested large uncertainty when estimating the unfrozen water content using electrical resistivity data.

The Impact
Electrical and seismic signals during freeze thaw cycles of saline permafrost show characteristic changes with differential hysteresis behaviors. The uncertainty associated with unfrozen water content estimation based on electrical resistivity could be large.

Summary
Our study revealed low electrical resistivity and elastic moduli at temperatures down to approximately -10 °C, indicating the presence of a significant amount of unfrozen saline water under the current field conditions. The spectral induced polarization signal showed a systematic shift during the freezing process, affected by concurrent changes of temperature, salinity, and ice formation. An anomalous induced polarization response was first observed during the transient period of supercooling and the onset of ice nucleation. Seismic measurements showed a characteristic maximal attenuation at the temperatures immediately below the freezing point, followed by a decrease with decreasing temperature. The calculated elastic moduli showed a non-hysteric response during the freeze-thaw cycle, which was different from the concurrently measured electrical resistivity response where a differential resistivity signal is observed depending on whether the soil is experiencing freezing or thawing. The differential electrical resistivity signal presents challenges for unfrozen water content estimation based on Archie's law.

Contacts
(BER PM)

Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Yuxin Wu
Lawrence Berkeley National Lab
Ywu3@lbl.gov; 5104864793

Funding
The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research is supported through contract number DE-AC0205CH11231 to Lawrence Berkeley National Laboratory.

Publications
Wu, Y., S. Nakagawa, T.J. Kneafsey, B. Dafflon, and S. Hubbard. 2017. “Electrical and Seismic Response of Saline Permafrost During Freeze-Thaw Transition,” Journal of Applied Geophysics, 146,16-26. DOI: 10.1016/j.jappgeo.2017.08.008.

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

Recent Highlights

Sep 18, 2018
Vegetation Demographics in Earth System Models: A Review of Progress and Priorities
An assessment of current approaches to including individual plant dynamics in ESMs and the need f [more...]

May 04, 2018
Contribution of Environmental Forcings to U.S. Runoff Changes for the Period 1950-2010
Understanding and attributing long-term trends of US runoff changes. < [more...]

May 03, 2018
Vulnerability of Amazon Forests to Storm-Driven Tree Mortality
Wind-related tree mortality is important for reliable prediction of tropical forests and their ef [more...]

Mar 23, 2018
Teasing Out Molecular Details of Arctic Soil Organic Carbon Degradation under Warming
Pinpointing how fast different organic carbon molecules degrade under warming scenarios. [more...]

Mar 02, 2018
Resource Acquisition and Reproductive Strategies of Tropical Forest in Response to the El Niño-Southern Oscillation
Coordination between leaf and fruit phenology driven by a warm phase of ENSO. more...]