U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights

Terrestrial Biosphere Models Underestimate Photosynthetic Capacity and CO2 Assimilation in the Arctic
Published: September 06, 2017
Posted: September 07, 2017

New measurements of photosynthesis in the Arctic demonstrate that current models underestimate key photosynthetic parameters and the potential for CO2 uptake by Arctic vegetation.

The Science
Carbon uptake and loss from the Arctic is highly sensitive to climate change and these processes are poorly represented in terrestrial biosphere models (TBMs). Uncertainty surrounding the Arctic carbon cycle is dominated by uncertainty over CO2 uptake by photosynthesis. However, current TBMs have almost no data on Arctic photosynthesis and currently rely on understanding developed in temperate systems. This study provided the first Arctic dataset of the key photosynthetic parameters maximum carboxylation capacity and maximum electron transport rate (known as Vcmax and Jmax, respectively). We found that current TBM representation of these two parameters was markedly lower than the values we measured on the coastal tundra of northern Alaska, in some case five-fold lower. On average, the capacity for CO2 uptake by Arctic vegetation is double current TBM estimates.

The Impact
This work highlights the poor representation of Arctic photosynthesis in terrestrial biosphere models and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.

We measured Vcmax and Jmax, in seven species representative of the dominant vegetation found on the coastal tundra near Barrow, Alaska. We made three key discoveries: (1) The temperature response functions of Vcmax and Jmax that are used to determine how the capacity for CO2 uptake changes with temperature were markedly different than the temperature response functions of temperate plants. (2) Vcmax (shown here in the figure) and Jmax were two to five- fold higher than the values used to parameterize current TBMs. (3) Current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf level CO2 assimilation in Arctic vegetation. The insight and data set we provide in this study can be used to markedly improve TBM representation of Arctic photosynthesis and improve projections of how Arctic photosynthesis responds to rising temperature and CO2 concentration. The high impact dataset generated during this study has already been used in four additional publications.

Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Alistair Rogers
Brookhaven National Laboratory

This work was funded by the Next-Generation Ecosystem Experiment (NGEE-Arctic) project. The NGEE-Arctic project is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science.

Primary publication
Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD (2017) Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytologist.. Online Early. [doi: 10.1111/nph.14740] (Reference link)

Additional publications that used data from this study
Ghimire B, Riley WJ, Koven CD, Kattge J, Rogers A, Reich PB, Wright IJ (2017) A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications. 27, 1421-1434.

De Kauwe MG, Lin Y-S, Wright IJ, Medlyn BE, Crous KY, Ellsworth DE, Maire V, Prentice IC, Atkin OK, Rogers A, Niinemets U, Serbin S, Meir P, Uddling J, Togashil HF, Tarainen L, Weerasinghe LK, Evans BJ, Ishida FY, Domingues TF (2016) A test of the "one-point method" for estimating carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytologist. 210, 1130-1144.

Ali AA, Xu C, Rogers A, Fisher RA, Wullschleger SD, McDowell NG, Massoud EC, Vrugt JA, Muss JD, Fisher JR, Reich PB, Wilson CJ (2016) A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model Development 9, 587-606.

Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher R, Wullschleger SD, Reich PR, Vrugt JA, Bauerle WL, Santiago LS, Wilson CJ (2015) Global scale environmental control of plant photosynthetic capacity. Ecological Applications 25, 2349-2365.

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Climate and Earth System Modeling
  • Cross-Cutting: Scientific Literature
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Feb 22, 2018
Soil Microbiome in Arctic Polygonal Tundra Unlocked
Landscape topography structures the soil microbiome in Arctic polygonal tundra. The Sc [more...]

Feb 16, 2018
A Challenging Future for Tropical Forests
Mortality rates of moist tropical forests are on the rise due to environmental drivers and relate [more...]

Feb 06, 2018
Ice Formed by Contact Freezing: Pressure Matters, Not Just Temperature
Laboratory measurements show that distortion of water droplet surface may increase the likelihood [more...]

Jan 27, 2018
Clarifying Rates of Methylmercury Production
New model provides more accurate rate constant estimates for mercury methylation and demethylatio [more...]

Jan 26, 2018
More Designer Peptides, More Possibilities
Combined experimental and modeling approach contributes to understanding the structure of cell me [more...]