U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Photosynthesis Modeling is Stymied by Competing Hypotheses on Scaling of Plant Traits
Published: June 23, 2017
Posted: September 06, 2017

Uncertainty in how maximum photosynthetic rates scale across the Earth leads to substantial uncertainty predictions of terrestrial carbon uptake.

The Science
A major source of uncertainty in modeling of global photosynthesis and associated carbon cycle dynamics, is the calculation of maximum photosynthetic carboxylation rate, which is one of two plant traits that closely determines photosynthetic rate. Various methods are used in terrestrial biosphere models to calculate these traits; each representing a different theory about how these traits scale but the resultant errors have not yet been quantified.

The Impact
This research highlights the need for robust estimates of global photosynthesis and a better understanding of how maximum photosynthetic rates scale across the Earth’s surface.

Summary
The impact on global patterns of photosynthesis of four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) was investigated by an international team of researchers. Led by a DOE researcher at Oak Ridge National Laboratory, the study finds that global photosynthesis estimates from the different trait-scaling hypotheses ranged between 108 and 128 PgC yr-1, representing around 65% of the uncertainty range found in photosynthesis model intercomparison exercises. The uncertainty propagated through to a 27% variation in net biome productivity, the net amount of carbon removed from the atmosphere by land ecosystems. All hypotheses produced global photosynthesis estimates that were highly correlated with proxies of global photosynthesis. Nevertheless, nutrient limitation appeared to be marginally the best method to simulate the scaling of maximum photosynthetic rates. The comparison of model photosynthesis with ‘observed’ photosynthesis was stymied by the fact that no robust methods exist to measure photosynthesis at the global scale. For this reason, researchers used three proxies of global photosynthesis to compare with the model estimates. Interestingly, photosynthesis in agricultural regions of Earth were much higher in the satellite-based photosynthesis proxies that measure solar induced fluorescence of the photosynthetic machinery in a leaf. Higher photosynthesis in these regions when measured from space suggest that models and other photosynthesis proxies may be missing an important component of global photosynthesis in these managed ecosystems. 

Contacts
(BER PM)

Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289) 

Dorothy Koch
SC_23.1
Dorothy.koch@science.doe.gov (301-903-0105)

(PI Contact)
Anthony P. Walker
Oak Ridge National Laboratory
walkerap@ornl.gov

Funding
DOE Office of Science BER, Next Generation Ecosystem Experiments — Tropics

Publications
Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytol Early View (2017). [doi:10.1111/nph.14623] (Reference link)

Related Links
Next Generation Ecosystem Experiments — Tropics

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)