BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Building Confidence in Hydrologic Models
Published: January 25, 2017
Posted: September 05, 2017

Model intercomparison project evaluates performance of seven different integrated hydrology models for solving challenge benchmarks.

The Science  
Understanding water availability and quality for large-scale surface and groundwater systems requires simulation, and many numerical models have been developed by scientists to address these needs. A suite of common hydrologic benchmark challenges was developed, and seven different modeling teams from the United States and Europe exercised their models to achieve the benchmarks, and thereby to better understand how each of the models and model outputs agree and differ.

The Impact
Model intercomparison benchmark challenges build confidence in the choice of model used for a specific scientific question or application, and they illuminate the implications of model choice because they force modeling teams to better understand the strengths and weaknesses of their own and competing models. This understanding leads to more reliable simulations and improves integrated hydrologic modeling.

Summary
Following up on a first integrated hydrologic model intercomparison project several years ago, seven teams of modelers, including two teams supported by the Interoperable Design for Extreme-scale Application Software (IDEAS) project, participated in a second intercomparison project. Teams met at a workshop in Bonn, Germany, and designed a series of three model intercomparison benchmark challenges. The challenges were designed to focus on different aspects of integrated hydrology, including a hillslope-scale catchment, subsurface structural inclusions and layering, and a field study of hydrology on a small ditch with simple but data-informed topography. Parameters were standardized, but each team used their own model, including differences in model physics, coupling, and algorithms. Results were collected, stimulating detailed conversations to explain similarities and differences across the suite of models. While each of the codes shares a common underlying core capability, each of them is focused on different applications and scales and has its own strengths and weaknesses. This type of effort leads to improvement in all the codes and improves the modeling community’s understanding of simulating integrated surface and groundwater systems hydrology.

Contacts
Principal Investigators
Ethan Coon
Oak Ridge National Laboratory
coonet@ornl.gov

Reed Maxwell
Colorado School of Mines
rmaxwell@mines.edu

Funding
Funding was provided by the Subsurface Biogeochemical Research program (SBR) of the Office of Biological and Environmental Research (BER), within the U.S. Department of Energy (DOE) Office of Science, and the Interoperable Design for Extreme-scale Application Software (IDEAS) project of the DOE Advanced Research Projects Agency-Energy (ARPA-E).

Publications
Kollet, S., M. Sulis, R. M. Maxwell, C. Paniconi, M. Putti, G. Bertoldi, E. T. Coon, E. Cordano, S. Endrizzi, E. Kikinzon, E. Mouche, C. Mugler, Y.-J. Park, J. C. Refsgaard, S. Stisen, and E. Sudicky. “The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks.” Water Resources Resources 53(1), 867–90 (2017). [DOI:10.1002/2016WR019191].

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)