BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Rapid Characterization of Northern Cold-Region Soil Organic Matter
Published: November 01, 2017
Posted: September 05, 2017

Infrared spectroscopy discriminated variations in soil properties and extent of organic matter decomposition for Alaskan soils.

The Science
Multivariate analysis of mid-infrared spectra of soils collected from a 2800-km latitudinal transect across Alaska identified spectral bands that can be used to quickly discriminate variations in soil properties, estimate the quantity and chemical composition of soil organic matter (SOM), and assess the degradation state of organic matter stored in northern cold-region soils.

The Impact
Soil analysis using traditional laboratory methods are often time consuming and expensive, and require relatively large samples—limiting the availability of information on the spatial variability of SOM composition and other soil properties. Mid-infrared spectroscopy of small soil samples proved to be a promising technique for quickly and reliably estimating carbon content and differentiating the degradation state of organic matter stored in northern cold-region soils.

Summary
The amount and vulnerability of soil carbon stocks in northern cold-region soils are major sources of uncertainty in the representation of terrestrial biogeochemical cycles in Earth system models. Researchers led by Argonne National Laboratory investigated the suitability of diffuse reflectance Fourier transform mid-infrared (DRIFT) spectroscopy—a nondestructive, cost-effective infrared light analysis method—to discriminate variations in soil physical and chemical properties needed to improve estimates of the spatial variability of carbon stocks and the extent of organic matter decomposition in these soils. Archived soils collected from a 2800-km latitudinal transect across Alaska were analyzed to provide a representative range of climate, vegetation, surficial geology, and soil types for the region. The chemical composition of organic matter, as well as site and soil properties, exerted strong multivariate influences on the DRIFT spectra. Spectral differences indicated that soils with less decomposed organic matter contained greater abundance of relatively fresh materials, such as carbohydrates and aliphatics, whereas clays and silicates were incorporated into more degraded soils. A single spectral band was identified that might be used to quickly estimate soil organic carbon and total nitrogen concentrations. Overall, the study demonstrated that DRIFT spectroscopy can serve as a valuable tool for quickly and reliably assessing variations in the amount and composition of organic matter in northern cold-region soils.
 

Contacts
BER Program Manager
Daniel Stover
Terrestrial Ecosystem Science, SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

Principal Investigator
Julie D. Jastrow
Argonne National Laboratory
Lemont, IL 60439
jdjastrow@anl.gov (630-252-3226)

Corresponding author
Roser Matamala
Argonne National Laboratory
Lemont, IL 60439
matamala@anl.gov (630-252-9270)

Funding
This study was supported by the Climate and Environmental Science Division's Terrestrial Ecosystem Science Program of the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science under contract DE-AC02-06CH11357 to Argonne National Laboratory.

Publications
Matamala, R., F.J. Calderón, J.D. Jastrow, Z. Fan, S.M. Hofmann, G.J. Michaelson, U. Mishra, C.L. Ping. “Influence of site and soil properties on the DRIFT spectra of northern cold-region soils.” Geoderma 305, 80–91 (2017). [DOI:10.1016/j.geoderma.2017.05.014]

Related Links
Argonne Terrestrial Ecosystem Science SFA

 

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)