U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Direct Measure of Basin-Wide Evaporation and Transpiration from the Amazon Rainforest
Published: July 20, 2017
Posted: September 05, 2017

A water budget approach shows complex seasonal cycle and long-term changes in tropical forest function.

The Science  
The NGEE-Tropics research team combined satellite measurements of rainfall and gravity anomalies with Amazon River flow data to derive a seasonally-resolved estimate of evapotranspiration for the entire Amazon basin. Next the team analyzed the seasonal cycles and long-term variation of this measurement and compared it to process-based land surface model predictions.

The Impact
The study’s results show a more complex and different seasonal cycle than current land surface models predict. The study suggests a long-term decline in evapotranspiration from the forest, due to ecosystem functional change at the scale of the entire basin.

Summary
Evapotranspiration, which comprises the sum of all moisture fluxes from an ecosystem directly to the atmosphere, is a crucial quantity at the center of the terrestrial energy, water, and carbon cycles. Because measurements of evapotranspiration are typically made at local scales, and are sparse over remote locations such as the Amazon, the larger-scale fluxes are not well known. This study combined observations of rainfall, river discharge, and time-varying gravity anomalies to construct a water budget for the Amazon basin, which allows the NGEE-Tropics researchers to solve for evapotranspiration as the missing term in the budget. This water budget-based measurement shows a complex seasonal cycle, with a deeper minimum during the wet season than is estimated by other upscaling estimates or by process-based models, and also shows that models tend to increase their seasonal evapotranspiration fluxes later in the dry season than is observed. Furthermore, a long-term analysis of evapotranspiration suggests a decline in the rate over the period of observation, which could be evidence of a large-scale change in ecosystem function.

Contacts (BER PM)
Daniel Stover, Dorothy Koch, Renu Joseph
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)
dorothy.koch@science.doe.gov (301-903-0105)
Renu.Joseph@science.doe.gov (301-903-9237)

(PI Contact)
Charles Koven
Lawrence Berkeley National Laboratory
cdkoven@lbl.gov, 510.486.6724

Funding
ALSS was supported by National Science Foundation grants AGS-1321745 and AGS-1553715. CDK received support from the Regional and Global Climate Modeling program through the BGC-Feedbacks SFA and the Terrestrial Ecosystem Sciences and Earth System Modeling programs through the Next Generation Ecosystem Experiments-Tropics (NGEE-Tropics) project of the Biological and Environmental Research (BER) Program in the U. S. Dept. of Energy Office of Science.

Publications
Swann, A. L. S., and Koven , C. D. A direct estimate of the seasonal cycle of evapotranspiration over the Amazon. Journal of Hydrometeorology (2017). [doi:10.1175/JHM-D-17-0004.1] (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)