U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Flooding Determines Seasonality in Sphagnum Moss Photosynthesis
Published: May 06, 2017
Posted: September 05, 2017

Identifying causes of seasonality in Sphagnum mosses at the SPRUCE experiment at the Marcell Experimental Forest, Minn.

The Science  
Sphagnum mosses form many of the world’s peat bogs, which store huge reservoirs of submerged carbon. These ecosystems are at risk in a changing climate. DOE researchers investigated how photosynthesis in Sphagnum mosses changes though the seasons at the Marcell Experimental Forest, Minn. Researchers were surprised to find that the peak in Sphagnum photosynthesis was delayed compared with the seasonal peak in sunlight strength and showed that the delayed peak was likely due to flooding of the Sphagnum and submergence by water suppressing photosynthesis.

The Impact
The influence of flooding on the seasonal cycle of Sphagnum photosynthesis is an advance in our understanding of these at risk ecosystems that will help improve model simulations under a changing environment.

Summary
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. DOE researchers investigated the seasonal drivers of Sphagnum photosynthesis—the entry point of carbon into wetland ecosystems. Continuous measurements of Sphagnum carbon exchange with the atmosphere show a seasonal cycle of Sphagnum photosynthesis that peaked in the late summer, well after the peak in photosynthetically active radiation. Statistical analysis of oscillations in the data showed that water table height was the key driver of weekly variation in Sphagnum photosynthesis in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. A process-based model of Sphagnum photosynthesis was used to show the likelihood of seasonally changing maximum rates of photosynthesis and a previously unreported relationship between the water table and photosynthesising tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in CO2 transport through the Sphagnum tissue to the site of photosynthetic fixation, caused by changing Sphagnum water content, had minimal effect on photosynthesis. Researchers came up with a list of four specific areas to improve the modeling of Sphagnum photosynthesis.

Contacts (BER PM)
Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Anthony P. Walker
Oak Ridge National Laboratory
walkerap@ornl.gov

Funding
DOE Office of Science Office of Biological and Environmental Research, supports the Oak Ridge National Laboratory Terrestrial Ecosystem Science Scientific Focus Area.  

Publications
Walker, A. P. et al. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. J. Geophys. Res. Biogeosci. 2016JG003711 (2017). [doi:10.1002/2016JG003711] (Reference link)

Related Links
Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment
Data from this study http://mnspruce.ornl.gov/node/648

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Spruce and Peatland Responses Under Changing Environments (SPRUCE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)