U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Discovering the Genetic Timekeepers in Bioenergy Crops
Published: June 20, 2017
Posted: September 01, 2017

Waiting through a cold season to flower weighs heavily on the amount of biomass a plant accumulates. The Brachypodium grass on the right holds out through winter before beginning the promotion of a flower response (vernalization) and flower production. The plant on the left flowers without vernalization, and it does less work to establish roots and leaves. [Image courtesy of Daniel Woods]

A new class of plant-specific genes required for flowering control in temperate grasses is found.

The Science
To get more feedstock from grass crops, scientists sought to identify the genetic “timekeeper” that stops plant growth and starts plant flowering. They studied the genes that keep a grass growing, or prevent it from flowering, until it has undergone prolonged cold exposure. After screening for and identifying model grasses, the team identified a mutant that flowers rapidly without cold exposure. They then described and characterized the mutant’s missing gene. They named their newly discovered gene REPRESSOR OF VERNALIZATION1.

The Impact
Increasing plant growth could improve the economics of biomass as an energy source. However, once a plant starts flowering, it stops growing. This study furthers the molecular-level knowledge of the flowering regulatory network in the model grass Brachypodium distachyon. The results advance the potential to manipulate flowering time in bioenergy grass crops. Such control would increase biomass yield and subsequently U.S. energy independence.

Summary
The timing of flowering is a key trait for biomass yield. A requirement for vernalization, the process by which prolonged cold exposure provides the ability for grass to flower when given the correct signal (known as competence), is an important adaptation to temperate climates that ensures flowering does not occur before the onset of winter. In temperate grasses, vernalization results in the up-regulation of the gene VERNALIZATION1 (VRN1) to establish competence to flower; however, little is known about the mechanism underlying repression of VRN1 in the fall season, which is necessary to establish a vernalization requirement. Scientists at the Great Lakes Bioenergy Research Center reported that a plant-specific gene containing a bromo adjacent homology and transcriptional elongation factor S-II domain, named RVR1, represses VRN1 before vernalization in the model grass specie Brachypodium distachyon. Thus, RVR1 plays a role in establishing a vernalization requirement in B. distachyon and is likely to play the same role in other vernalization-requiring grasses. Interestingly, RVR1 is a plant-specific gene that is conserved across the plant kingdom, and this study provides the first example of a role for this class of plant-specific genes.

PM Contact
N. Kent Peters, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
U.S. Department of Energy
kent.peters@science.doe.gov

PI Contact
Richard M. Amasino
University of Wisconsin-Madison
amasino@biochem.wisc.edu

Funding
This work was funded in part by the National Science Foundation (grant IOS-1258126), the U.S. Department of Energy (DOE) Great Lakes Bioenergy Research Center (DOE Office of Science, Biological and Environmental Research, DE-FC0-07ER64494), a National Institutes of Health-sponsored predoctoral training fellowship to the University of Wisconsin Genetics Training program, and the Gordon and Betty Moore Foundation and the Life Sciences Research Foundation for their postdoctoral fellowship, and Wallonie-Bruxelles International for their postdoctoral fellowships.

Publication
D.P. Woods, T.S. Ream, F. Bouche, J. Lee, N. Thrower, C. Wilkerson, and R.M. Amasino, “Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1.” Proceedings of the National Academy of Sciences USA 114, 6623-6628(2017) [DOI: 10.1073/pnas.1700536114] (Reference link)

Related Links
Great Lakes Bioenergy Research Center
University of Wisconsin-Madison press release: Newly identified gene helps time spring flowering in vital grass crops
Wisconsin State Farmer article: Newly id'd gene helps grass crops
Earth.com article: Newly discovered gene could increase plant yield

Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)