U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Retention of Stored Water Enables Tropical Tree Saplings to Survive Extreme Drought Conditions
Published: April 07, 2017
Posted: July 19, 2017

The Science  
In order to test the ability of tropical tree saplings to avoid dehydration during severe droughts, as well as the mechanisms and traits associated with dehydration avoidance, potted saplings were subjected to three months without water and their water relations were compared to well-watered control plants.

The Impact
Some tree species remained well hydrated even after three months without water. These species had reduced root surface area in the drought treatment, suggesting a role for root abscission in preventing water loss from roots to soil during severe drought.

Summary
Tree species vary greatly in their ability to extract water from drying soil, yet it is unclear how much they vary in their ability to remain hydrated when soil water is unavailable. To explore variation in the ability to regulate plant water status,  potted saplings of tropical trees were subjected to extreme drought and compared their responses to well-watered plants. After three months, soil in the drought treatment was extremely dry, yet some species had 100% survival and maintained water status similar to well-watered plants (i.e., dehydration-avoiding species). Other species had low survival and reached low water status. The dehydration-avoiding species had traits that favor water storage (e.g., low tissue density), which could provide a reservoir that buffers water status despite water loss, yet they maintained most of their stored water during the drought. The dehydration-avoiding species also had low lateral root area, which was further reduced in the drought treatment. This may slow water loss into dry soil. Together, these results suggest that the ability to avoid dehydration during extreme drought varies greatly among species and is dependent on retaining stored water within the plant.

Contacts (BER PM)
Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Brett Wolfe
Smithsonian Tropical Research Institute
btwolfe@gmail.com

Funding
Research was funded with a Garden Club of America award in tropical botany and a Smithsonian Tropical Research Institute short-term fellowship. During manuscript preparation, BT Wolfe was supported in part by the Next Generation Ecosystem Experiments–Tropics, funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research.

Publications
Wolfe, B. T. (2017), Retention of stored water enables tropical tree saplings to survive extreme drought conditions. Tree Physiology, 37 (4): 469-480. doi:10.1093/treephys/tpx001.

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)