U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Crop Control of Evaporative Fraction in the Southern Great Plains
Published: June 10, 2017
Posted: July 19, 2017

Land surface influence on the atmosphere depends on crop type and growth.>

The Science  
In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers, but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. This study demonstrates that the harvest of winter wheat leads to a dramatic change in the fraction of surface energy transferred to the atmosphere as water vapor.  Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

The Impact
The shift in relative importance of surface variables on surface energy transfer to the atmosphere demonstrates the importance of crop type and growth on the atmosphere in the Southern Great Plains, where previously scientists had thought soil moisture and net radiation were the important variables. These effects of land cover and agriculture should be included in regional and global models for accurate representation of surface energy partitioning and the water cycle in regions with a mix of winter crops such as the Southern Great Plains.

Researchers synthesized and statistically analyzed many years of land surface observations from more than a dozen DOE Atmospheric Radiation Measurement observational facilities in the Southern Great Plains. They showed that during the winter wheat growing season, the quantity of green leaves and the surface-air temperature difference controlled surface energy fluxes, whereas after harvest, soil moisture was most important. For grass, leaf area was always most important.  Currently, few regional or global earth system models include realistic representations of agricultural processes, and far fewer have developed validated routines for simulating winter crops such as winter wheat. These effects of land cover and agriculture should be included in regional and global models for accurate representation of surface energy partitioning and the water cycle in regions with a mix of winter crops such as the Southern Great Plains.

Contacts (BER PM)
Shaima Nasiri

Sally McFarlane

(PI Contact)
Lara Kueppers
UC Berkeley/Lawrence Berkeley National Laboratory

Margaret Torn
Lawrence Berkeley National Laboratory 

This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR) programs. Data supporting this research can be found at http://www.archive.arm.gov/.

J. E. Bagley, L. M., Kueppers, D. P., Billesbach, I. N., Williams, S. C., Biraud, and M. S., Torn, “The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains.” J. Geophys. Res. Atmos. 122 (2017), doi:10.1002/2017JD026740. (Reference link)

Related Links
ASR Highlight: Crop Control of Evaporative Fraction in SGP

Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)