BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A New Methodology to Address Aerosol-Cloud Effects on Radiation
Published: September 13, 2016
Posted: July 14, 2017

Research helps separate influences of aerosols versus meteorology on clouds.

The Science
Small atmospheric particles called aerosols directly influence Earth’s radiative energy balance by absorbing and scattering sunlight. Because aerosols are also critical to the formation of cloud droplets, aerosols can indirectly affect the energy balance by changing cloud properties. These indirect effects have been difficult to observe because of the strong correlation between aerosols and meteorology. In this study, a new approach to assessing aerosol effects on shallow, liquid clouds is used to analyze aerosol associations with cloud macroscopic variables and radiative properties of shallow liquid water clouds. A 14-year analysis over the Department of Energy’s Atmospheric Radiation Measurment (ARM) Southern Great Plains (SGP) site shows only a weak aerosol influence on the shallow cloud radiative effect and albedo compared to macroscopic cloud properties and thermodynamic parameters such as lower tropospheric stability and boundary-layer coupling.

The Impact
In this study, a new approach to assessing aerosol effects on shallow, liquid clouds uses quantities that are more closely related to the cloud radiative effect, therefore representing a pragmatic pathway toward untangling cloud microphysical effects from dynamics.

Summary
The influence of aerosols on clouds and contribution to cloud radiative forcing represent one of the largest uncertainties in climate studies. Higher aerosol concentrations are linked to more cloud condensation nuclei (CCN) and, with all else equal, smaller cloud drops and higher cloud albedo. However, aerosol and meteorological drivers are interconnected and may result in mutually compensating effects and adjustments that are not fully understood. In this study, a new approach to assessing aerosol effects on shallow, liquid clouds is proposed. Instead of quantifying the usual metrics for microphysical response to an aerosol perturbation, the study focuses on analysis of aerosol associations with cloud macroscopic variables and radiative properties of shallow liquid water clouds. Long-term, ground-based observations from the ARM Climate Research Facility were analyzed to investigate the coincident effects of aerosols, macroscale cloud properties, and selected meteorological indices on clouds at ARM's SGP observatory in Oklahoma. For this site, the results indicate that over the 14-year analysis period the aerosol influence on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and thermodynamic parameters such as lower tropospheric stability and boundary-layer coupling play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosols show no correlation with cloud radiative properties, whereas the liquid water path shows a clear positive relationship.

Contacts (BER PM)
Ashley Williamson and Shaima Nasiri
Atmospheric System Research Program
Ashley.Williamson@science.doe.gov and Shaima.Nasiri@science.doe.gov

Sally McFarlane
Atmospheric Radiation Measurement Climate Research Facility
Sally.McFarlane@science.doe.gov

(PI Contact)
Allison McComiskey
National Oceanic and Atmospheric Administration
allison.mccomiskey@noaa.gov

Funding
The authors would like to thank the ARM program for processing and providing the datasets used in this work. This work was supported by FAPESP grants 2014/04181-2 and 2013/08582-9; Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric System Research program (grant DE-SC00145680); and National Oceanic and Atmospheric Administration.

Publication
Sena, E. T., A. McComiskey, and G. Feingold. 2016. "A Long-Term Study of Aerosol-Cloud Interactions and Their Radiative Effect at the Southern Great Plains Using Ground-Based Measurements," Atmospheric Chemistry and Physics 16(17), 11301-318. DOI: 10.5194/acp-16-11301-2016. (Reference link)

Related Links
ASR Highlight

Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)