Genomic Science Program. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Genomic Science Program

Modifications to the Bacterial Cell Envelope Increase Lipid Production
Published: May 23, 2017
Posted: July 14, 2017

A new strategy significantly increases the production and secretion of microbial lipids in bacteria that can be grown at industrial scale.

The Science
High-yield microbial production of lipids presents a significant challenge, often falling short of what can be theoretically obtained. This study characterized high-lipid (HL) mutant variants of Rhodobacter sphaeroides and showed that alterations to the bacterial cell envelope can result in increased accumulation of lipids relative to the parent strain.

The Impact
Knowledge of the mechanisms that limit microbial lipid production can reveal new strategies to increase lipid yield and the economic viability of alternatives to fuels or chemicals currently derived from petroleum.

Microbial lipids are potential replacements for petroleum-based fuels and chemicals; however, their production often falls short of theoretical yield, and improvement strategies are needed. Researchers from the Department of Energy’s (DOE) Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, and Environmental Molecular Sciences Laboratory (EMSL; a DOE Office of Science user facility) advanced their research on microbial lipid production by examining a new class of Rhodobacter sphaeroides mutants that exhibited enhanced lipid accumulation relative to the parent strain. The researchers used EMSL’s FEI Tecnai T-12 cryo-transmission electron microscope and structured illumination super resolution fluorescence microscope, in which chemical sensitivity profiles indicated HL mutants were sensitive to drugs that target the cell envelope. Changes in cell shape were also observed, suggesting that previously undescribed alterations in the bacterial cell envelope could be used to increase bacterial lipid production. Importantly, a subset of the HL mutants were able to secrete lipids, two of which accumulated approximately 60 percent of their total lipids extracellularly, potentially enabling easy product recovery from a bioreactor. When one of the highest lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to oleaginous microbes, defined as those accumulating 20 percent or more of their dry cell weight as lipid. Knowledge of the biological mechanisms that limit lipid production can inform new genetic engineering and growth strategies and enable this important class of molecules to be adopted as fuels or chemicals on a larger scale.

BER PM Contacts
Paul Bayer, SC-23.1, 301-903-5324
Kent Peters, SC-23.2, 301-903-5549

PI Contact
Timothy J. Donohue
University of Wisconsin-Madison

EMSL Contacts
Alice Dohnalkova

Dehong Hu

Galya Orr

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory and Great Lakes Bioenergy Research Center.

Lemmer, K. C., W. Zhang, S. J. Langer, A. C. Dohnalkova, D. Hu, R. A. Lemke, J. S. Piotrowski, G. Orr, D. R. Noguera, and T. J. Donohue. 2017. “Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production,” mBio 8(3), e00513-17. DOI: 10.1128/mbio.00513-17. (Reference link)

Related Links
Modifications to the Bacterial Cell Envelope Increase Lipid Production, EMSL science highlight
Modifying Cell Wall Can Increase Bacterial Lipids, Great Lakes Bioenergy Research Center highlight
Lipid Biofuels EMSL science highlight
Enhancing Microbial Lipid Production, Great Lakes Bioenergy Research Center highlight

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biological Engineering
  • Research Area: Structural Biology
  • Mission Science: Sustainable Biofuels

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Search all BER Highlights

Recent Highlights

Aug 01, 2017
Insights into an Eukaryotic Alga that Lives by the Sea
The genome of Porphyra umbilicalis reveals the mechanisms by which it thrives in the int [more...]

Jul 21, 2017
Scaling Microbial Genomics Discoveries for Ecosystem Modeling
Nutrient availability in model wetlands helps regulate microbial metabolism and soil carbon cycl [more...]

Jul 05, 2017
Tiny Green Algae Reveal Large Genomic Variation
First complete picture of genetic variations in a natural algal population could help explain how [more...]

Jul 05, 2017
New Technology Illuminates Microbial Dark Matter
Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs show [more...]

Jun 23, 2017
First Snapshot of a Bacterial Microcompartment’s Protein Shell
Reveals construction principles for nanobioreactor.  The Science more...]