U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Phosphorus Feedbacks May Constrain Tropical Ecosystem Responses to Changes in Atmospheric CO2
Published: July 14, 2016
Posted: July 05, 2017

The Science
Phosphorus (P) has been generally considered to be the most limiting nutrient in lowland tropical forests. Several recent field studies in the Amazonia have highlighted the importance of P in tropical forest productivity and function. Despite the importance of P in tropical carbon cycling, most Earth System Models don't currently include P cycling and P limitation.  In this study, we investigate how P cycling dynamics might affect tropical ecosystem responses to changes in atmospheric CO2 and climate using a P-enabled land surface model.

The Impact
This study shows that the coupling of P cycle in land surface model results in a more realistic spatial pattern of simulated ecosystem productivity in the Amazon region. Through exploratory simulations, this study points to the need for more tropical field measurements under different temperature/humidity conditions with different soil P availability. 

It is being increasingly recognized that carbon-nutrient interactions play important roles in regulating terrestrial carbon cycle responses to increasing CO2 in the atmosphere and climate change. Nitrogen-enabled models in CMIP5 showed that accounting for nitrogen greatly reduces the negative feedback between land ecosystems and atmospheric CO2. None of the CMIP5 models has considered P as a limiting nutrient, although P has been considered the most limiting nutrient in lowland tropical forests. In this study, scientists from Oak Ridge National Laboratory investigated the effects of P availability on carbon cycling in the Amazon region using a P-enabled land surface model. Model simulations demonstrate that CO2 fertilization effects in the Amazon region may be greatly overestimated if P cycling were not considered. Exploratory simulations highlighted the importance of considering the interactions between carbon, water, and nutrient cycling (both nitrogen and phosphorus) for the prediction of future carbon uptake in tropical ecosystems.

Contacts (BER PM)
Daniel Stover, Dorothy Koch and Renu Joseph
Daniel.Stover@science.doe.gov (301-903-0289)
dorothy.koch@science.doe.gov (301-903-0105)
renu.joseph@science.doe.gov (301-903-9237)

(PI Contact)
Xiaojuan Yang
Environmental Science Division and Climate Change Science Institute
Oak Ridge National Laboratory
yangx2@@ornl.gov (865-574-7615)

X. Yang, P.E. Thornton, D.M. Ricciuto, and F.M. Hoffman are supported by DOE Office of Science, Biological and Environmental Research, including support from the following programs: Regional and Global Climate Modeling Program (ORNL BGC-Feedbacks SFA), Terrestrial Ecosystem Science Program (ORNL TES SFA and NGEE-Tropics), Earth System Modeling (ACME project)  

Yang, X., P. E. Thornton, D. M. Ricciuto, and F. M. Hoffman. 2016. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Let. 43:7205-7214. doi:10.1002/2016GL069241. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)