U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Mechanical Vulnerability and Resistance to Snapping and Uprooting for Central Amazon Tree Species
Published: November 15, 2016
Posted: June 20, 2017

4 April 2017

Tree death associated with wind damage may be explained only by the different wind speeds and gusts direction.

The Science  
Through a tree-pulling experiment we found that tree resistance to failure (uproot or snapping) increased with size (diameter at the breast height, DBH (1.3 m) and above ground biomass, AGB) and differed among species.

The Impact
This mechanistic approach allows the comparison of tree vulnerability and resistance to snapping and uprooting across tropical and temperate forests and facilitates the use of current findings in the context of ecosystem models. Higher wind-induced tree mortality observed on plateaus and top of slopes may be explained by different wind speeds and gusts direction (valleys have different aspects and the wind can blow parallel or perpendicular), rather than by differences in soil-related factors that might effect Mcrit.

High descending winds generated by convective storms are a frequent and a major source of tree mortality disturbance events in the Amazon, affecting forest structure and diversity across a variety of scales, and more frequently observed in western and central portions of the basin. Soil texture in the Central Amazon also varies significantly with elevation along a topographic gradient, with decreasing clay content on plateaus, slopes and valleys respectively. In this study we investigated the critical turning moments (Mcrit - rotational force at the moment of tree failure, an indicator of tree stability or wind resistance) of 60 trees, ranging from 19.0 to 41.1 cm in diameter at breast height (DBH) and located in different topographic positions, and for different species, using a cable-winch load-cell system. Our approach used torque as a measure of tree failure to the point of snapping or uprooting. This approach provides a better understanding of the mechanical forces required to topple trees in tropical forests, and will inform models of wind throw disturbance. Across the topographic positions, size controlled variation in Mcrit was quantified for cardeiro (Scleronema mincranthum (Ducke) Ducke), mata-matá (Eschweilera spp.), and a random selection of trees from 19 other species. Our analysis of Mcrit revealed that tree resistance to failure increased with size (DBH and ABG) and differed among species. No effects of topography or failure mode were found for the species either separately or pooled. For the random species, total variance in Mcrit explained by tree size metrics increased from an R2 of 0.49 for DBH alone, to 0.68 when both DBH and stem fresh wood density (SWD) were included in a multiple regression model. This mechanistic approach allows the comparison of tree vulnerability induced by wind damage across ecosystems, and facilitates the use of forest structural information in ecosystem models that include variable resistance of trees to mortality inducing factors. Our results indicate that observed topographic differences in windthrow vulnerability are likely due to elevational differences in wind velocities, rather than by differences in soil-related factors that might effect Mcrit.

Contacts (BER PM)
Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
G.H.P.M. Ribeiro

Robinson Negrón-Juárez was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) and Programs.

G.H.P.M. Ribeiro, J.Q. Chambers, C.J. Peterson, S.E. Trumbore, D. Magnabosco Marra, C. Wirth, J.B. Cannon, R.I. Négron-Juárez, A.J.N. Lima, E.V.C.M. de Paula, J. Santos, N. Higuchi, “Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species,” Forests Ecology and Management, 380, 1-10, 2016. DOI:10.1016/j.foreco.2016.08.039

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)