BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Energetic and Carbon Economic Origins of Leaf Thermoregulation
Published: August 22, 2016
Posted: June 15, 2017

The Science 
The research described in this paper uses a variety of global datasets to support theory suggesting that plants maximize carbon gain, in part, via myriad traits that regulate temperature near the optimum for photosynthesis.

The Impact
This paper provides the first large advance in the understanding of leaf thermoregulation, and is thus likely to be tested widely.

Summary
Leaf thermoregulation has been rarely documented, and its control is unknown. However, leaf temperature is one of the most critical parameters regulating photosynthesis in Earth system models. Improving its understanding has widespread fundamental and applied (e.g., modeling) value. The scientists tested a novel carbon- and energy-based theory using multiple global datasets of leaf temperature and photosynthesis, along with myriad leaf traits. The theory was supported by the data, and demonstrated that leaf thermoregulation does act to maximize photosynthesis. This research has broad implications for fundamental biology and for applied modeling of ecosystems.

Contacts
BER Program Manager
Daniel Stover
Terrestrial Ecosystem Science, SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

Principal Investigator
Nate McDowell
Pacific Northwest National Laboratory
Richland, WA 99354
nate.mcdowell@pnnl.gov

Funding
Funding was provided by the Next-Generation Ecosystem Experiments (NGEE)–Tropics project of the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science; by Los Alamos National Laboratory LDRD, by the Natonal Science Foundation, and bythe Aspen Center for Environmental Studies.

Publications
Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J., Kaspari, M., Helliker, B.R., and Enquist, B.J. "The energetic and carbon economic origins of leaf thermoregulation." Nature Plants 2, 16129 (2016). [DOI:10.1038/nplants.2016.129]

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)