U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Consequences of Drought Stress on Biofuel Production
Published: November 06, 2016
Posted: June 06, 2017

From field to fuel: Illustration of switchgrass conversion process. [Image courtesy of Matthew Wishiewski]

Switchgrass cultivated during a year of severe drought inhibited microbial fermentation.

The Science
Investment in plant-derived sustainable biofuel sources could contribute to a near-term solution toward U.S. energy security and independence. However, weather conditions have the potential to greatly affect yearly biomass production. When plants are grown under water-stressed conditions, reduction in photosynthesis and slower growth are exhibited, leading to decreased biomass production. In this study researchers examined the effect of weather on biofuel production by comparing switchgrass and corn stover harvested after a year of major drought and after 2 years of normal precipitation (2010 and 2013).

The Impact
The study is the first linking variation in environmental conditions during bioenergy crop growth to potential detrimental effects on fermentation during biofuel production. This underscores the need for the development of biofuel production systems able to tolerate changes in precipitation and water availability as well as robust fermentation processes.

Summary
In response to the 2012 severe Midwestern drought, soluble sugar accumulated in switchgrass at significantly higher levels in comparison to non-drought period years. These sugars were chemically changed during the pretreatment stage, the step which opens up the physical structure of the plant cell wall. The soluble sugars chemically changed by reacting with the ammonia-based pretreatment chemicals to form highly toxic compounds known as imidazoles and pyrazines. The formation of toxic compounds during the pretreatment stage inhibited conversion, the final step where intermediates such as sugars are fermented into biofuel by microorganisms, such as the microbe S. cerevisiae. However, it may be possible to overcome this issue by 1) removing the soluble sugars prior to pretreatment or 2) using microbial strains resistant to the toxic effects of imidazoles and pyrazines. This study demonstrates that while there are benefits to growing bioenergy crops on marginal lands to avoid competition with food crops, the plants grown there may experience higher levels of stress resulting in deleterious impacts on microbes during biofuel production. To develop sustainable biofuel production systems, the deleterious effects of stress, such as fluctuations in precipitation and water availability, must be mitigated. This research helps to provide an understanding of the effects of drought stress on switchgrass and is relevant to DOE’s energy and environmental missions.

Contact
Kent Peters, Ph.D.
Program Manager Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
U.S. Department of Energy
kent.peters@science.energy.doe.gov

(PI Contact)
Rebecca Garlock Ong
Assistant Professor, Chemical Engineering - Michigan Technological University
rgong1@mtu.edu

Funding
This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). Additional funding for L.G.O. is under DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830).

Publications
R.G. Ong, A. Higbee, S. Bottoms, Q. Dickinson, D. Xie, S.A.Smith, J. Serate, E. Pohlmann, A.D. Jones, J.J. Coon, T.K. Sato, G.R. Sanford, D. Eilert, L.G. Oates, J.S. Piotrowski, D.M. Bates, D. Cavalier, and Y. Zhang, “Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate.” Biotechnology for Biofuels 9, 237 (2016) [DOI: 10.1186/s13068-016-0657-01] (Reference link)

Related Links
Great Lakes Bioenergy Research Center

Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)