U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights

Ecological Role of Hydraulic Traits of Amazon Rainforest Trees
Published: May 29, 2017
Posted: June 05, 2017

Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees

The Science 
This study demonstrated that tropical tree species that were tolerant of an experimental drought had hydraulic traits that differed from those that were intolerant.  The hydraulic traits of the measured species were not aligned with their early- versus late-successional life histories, thus revealing an important drought-tolerance control over tropical forest dynamics.

The Impact
The observed differences in plant hydraulic traits enhances our understanding of important controls over tropical forest dynamics, which is critical for informing the parameterization of hydrodynamic formulations used in Earth System Models.

This study found a characteristic pattern in the measured leaf and xylem traits of several tropical tree species that was consistent with their demographic responses to an experimentally-imposed drought.  This study provides valuable insight into the traits controlling drought tolerance of tropical rainforest trees and provides much needed information for parameterizing more realistic water-stress functions in Earth System Models. Finally, understanding the variability in plant hydraulic traits that exists among tropical tree species is critical for determining the fate of the Amazon rainforest if precipitation patterns change substantially.

Contacts (BER PM)
Daniel Stover and Dorothy Koch
Daniel.Stover@science.doe.gov (301-903-0289); dorothy.koch@science.doe.gov (301-903-0105)

(PI Contact)
Thomas L. Powell
Lawrence Berkeley National Laboratory

This research was funded by a National Science Foundation Doctoral Dissertation Improvement Grant (NSF award # DEB-1110540), the National Science Foundation Partnership for International Research and Education in Amazon Climate Interactions grant (NSF award #OISE-0730305), a grant from the Andes-Amazon Initiative of The Gordon and Betty Moore Foundation, graduate research funding from the Department of Organismic and Evolutionary Biology, Harvard University, and the Office of Biological and Environmental Research, US Department of Energy, NGEE-Tropics grant.  Patrick Meir was supported by NERC NE/J011002/1 and ARC FT110100457.

Powell T.L., Wheeler J.K., de Oliveira  A.A.R., da Costa A.C.L., Saleska S.R., Meir P., Moorcroft P.R. Differences in xylem cavitation resistance and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology (2017). DOI: 10.1111/gcb.13731 (Reference link)

Powell T., Moorcroft P. Leaf Pressure Volume Data in Caxiuanã and Tapajós National Forest, Para, Brazil (2011). NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/NGT/1347606

Powell T., Moorcroft P. Xylem vulnerability curves of canopy branches of mature trees from Caxiuanã and Tapajós National Forests, Para, Brazil. NGEE Tropics Data Collection. Accessed at http://dx.doi.org/10.15486/NGT/1347607

Topic Areas:

  • Research Area: Climate and Earth System Modeling
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Nov 01, 2017
Electrical and Seismic Response of Saline Permafrost Soil During Freeze-Thaw Transition
The Science This study demonstrated the mechanical and electrical resp [more...]

Nov 01, 2017
Rapid Characterization of Northern Cold-Region Soil Organic Matter
Infrared spectroscopy discriminated variations in soil properties and extent of organic matter d [more...]

Oct 13, 2017
Measuring Photosynthesis via the Glow of Plants
Novel observations suggest a great potential of measuring global gross primary production via so [more...]

Oct 05, 2017
Networking Science to Improve Soil Organic Matter Management Opportunities
A perspective from the International Soil Carbon Network. The Science [more...]

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]