U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Mapping Snow Depth Within a Tundra Ecosystem Using Multiscale Observations and Bayesian Methods
Published: April 03, 2017
Posted: May 10, 2017

The Science  
We developed a Bayesian approach to integrate a variety of state-of-art snow sensing techniques (e.g., in situ measurements, ground-penetrating radar, phodar on unmanned aerial system (UAS) and airborne lidar) for mapping highly heterogeneous snow depth over ice-wedge polygonal tundra. Our analysis also showed that the end-of-winter snow depth was highly variable in several-meter distances, influenced by microtopography.

The Impact
Snow plays a critical role in Arctic ecosystem functioning, as it influences permafrost thaw, water delivery and carbon exchange. Snow depth is, however, extremely heterogeneous, and traditionally difficult to map in sufficient resolution using conventional point measurements. Although there have been significant technical advances in measuring snow depth (e.g., geophysics and remote sensing), it is still challenging to integrate all these state-of-art data in a harmonized manner due to their different scales and accuracy. The developed Bayesian approach will be an integrating framework for these advanced datasets, allowing us to measure snow depth at high resolution over a large area.

Summary
This paper aim to develop an effective strategy to characterize heterogeneous snow depth over the Arctic tundra, using state-of-art techniques (ground-penetrating radar and UAS phodar) and also to quantify the relationship between snow depth and topography. All the techniques provided fairly accurate estimates of snow depth, while they have different characteristics in term of acquisition time and accuracy. We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the wavelet approach. We found that the end-of-winter snow depth was highly variable over several-meter distances, affected primarily by microtopography. In addition, we developed and implemented a Bayesian approach to integrate multi-scale measurements for estimating snow depth over the landscape.

Contacts (BER PM)
Daniel Stover
Terrestrial Ecosystem Science Program Manager
Daniel.Stover@science.doe.gov

(PI Contact)
Stan D. Wullschleger
Oak Ridge National Laboratory
wullschlegsd@ornl.gov

Funding
This research is supported through contract number DE-AC0205CH11231 to Lawrence Berkeley National Laboratory.

Publications
Wainwright, H. M., Liljedahl, A. K., Dafflon, B., Ulrich, C., Peterson, J. E., Gusmeroli, A., and Hubbard, S. S. “Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods”, The Cryosphere, 11, 857-875, doi:10.5194/tc-11-857-2017, 2017. (Reference link)

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)