U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Making Full Use of the Doppler Spectrum Reduces Uncertainties in Ice Cloud Properties
Published: January 25, 2017
Posted: May 10, 2017

Scientists use ARM aircraft and ground-based data, along with synthetic observations, to explore improvements obtained by using higher order moments of the radar Doppler spectrum in retrieval algorithms.

The Science  
Ice clouds play an important role in the Earth’s energy balance, and how much energy they scatter are absorb depends on details of the particles that make up the ice clouds.  It is difficult and expensive to sample ice clouds directly with aircraft probes, so millimeter wavelength radars are often used to obtain information about ice cloud properties.  However, radars only observe ice clouds indirectly, through the scattering of microwave energy from cloud particles. Classic radar variables of radar reflectivity factor, mean Doppler velocity, and Doppler spectral width can be ambiguous for deriving microphysical characteristics such as water content and particle size.  In this study, scientists use aircraft data, radar observations, and synthetic observations to explore whether using additional information contained in the higher moments (such as skew and kurtosis) and slopes of the radar Doppler spectrum from modern state-of-the-art research radar can improve retrievals of ice cloud properties.

The Impact
Although higher order moments and slopes of the radar Doppler spectrum are noisier than lower order moments, they provide useful information on ice cloud microphysical and kinematic properties.  Using all of the available moments reduces the uncertainty of all retrieved quantities with respect to the prior knowledge and use of multiple radar frequencies can reduce the uncertainties even further.  Together with the methods to estimate the a priori dataset developed in a previous study by these authors, this study introduces a generalized retrieval framework that can also be applied to cloud radar observations from other time periods and locations.  Reduced uncertainties in observations of ice cloud properties will help scientists better understand the processes that control ice cloud formation and properties, and their impact on the Earth’s energy balance.

The scientists developed a Bayesian ice cloud retrieval using optimal estimation methods. In situ aircraft data obtained during the ARM Indirect and Semi-Direct Aerosol Campaign (ISDAC) obtained around Utqiagvik (formerly known as Barrow), AK was used as an a priori data set. Using mainly synthetic but also real cloud radar observations, scientists compared retrievals exploiting three different sets of observations (lower moments, higher moments [includes slopes], and all moments) using one, two, or three radar frequencies. The retrieval state vector consists of the microphysical (particle-size distribution, mass-size relation, and cross section-area relation) and kinematic (vertical wind and turbulence) quantities required to forward-model the moments and slopes of the radar Doppler spectrum. To the authors’ knowledge, this is the first study characterizing simultaneously microphysical quantities and kinematic properties of ice clouds based on radar observations. The researchers found that the uncertainty of quantities describing the mass-size and the area-size relations of ice particles as well as the turbulence was reduced by the use of higher moments and the slopes. For a single radar frequency, more information can be retrieved when including higher-order moments and slopes than when using only reflectivity and mean Doppler velocity but two radar frequencies.

Contacts (BER PM)
Sally McFarlane
ARM Program Manager

(PI Contact)
Maximilian Maahn
Cooperative Institute for Research in Environmental Sciences
University of Colorado Boulder

This study was carried out within the project ADMIRARI II supported by the German Research Association (DFG) under research Grant LO901/ 5-1 and was also supported by Energy Transition and Climate Change (ET-CC) under DFG Grant ZUK 81. Author M. Maahn was also supported by Grant GSGS- 2015B-F03 of the Graduate School of Geosciences of the University of Cologne. Data were obtained from the Atmospheric Radiation Measurement Program sponsored by the U.S. Department of Energy Office of Science Office of Biological and Environmental Research (BER). Computing time was gratefully allocated by the Cologne High Efficiency Operating Platform for Sciences (CHEOPS) at the University of Cologne.

Maahn M and U Löhnert. 2017. "Potential of higher-order moments and slopes of the radar Doppler spectrum for retrieving microphysical and kinematic properties of Arctic ice clouds." Journal of Applied Meteorology and Climatology, 56(2), 10.1175/jamc-d-16-0020.1. (Reference link)

Topic Areas:

  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)