U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

A New High-Throughput Genome Editing Technique to Generate Mutant Bacterial Strains
Published: December 12, 2016
Posted: May 10, 2017

Using computer-aided design to develop a CRISPR/Cas9-based approach to cause thousands of mutations and map their effects to the mutated genes.

The Science
The generation of large collections of mutant bacterial strains is limited due to low mutagenic efficiencies and the difficulty of tracking diverse types of mutations or their combinations. Researchers at the University of Colorado in Boulder and their collaborators have taken advantage of the high editing efficiency of the CRISPR (clustered regularly interspaced short palindromic repeats) -Cas9 system, combined with synthetic bar-codes, to develop a method that can mutate thousands of genes and easily track the mutated genes to determine their effect on the bacterial physiology.    

The Impact
This new editing technique, for the first time, makes it possible to induce individual mutations throughout a bacterial genome in parallel, and associate each mutation with the resulting phenotype at single-nucleotide resolution in a single experiment. This method gives researchers the ability to design and modify microorganisms in a genome-wide manner allowing them to engineer new metabolic pathways for the production of biofuels and other relevant industrial products.

A CRISPR-enabled trackable genome engineering (CREATE) cassette was developed to include a targeting guide RNA (gRNA), a DNA sequence homologous to a given target locus in the genome, and a unique bar code to tack each mutation. A computationally designed library of over 50,000 CREATE cassettes targeting multiple genome locations was synthesized and used to induce specific mutations in a bacterial population. The resulting mutant strains were tracked by genomic sequencing showing an average editing efficiency of 70%. The CREATE library was tested on a bacterial culture under thermal stress and several hundred mutants that had previously been identified as adaptations to heat were also identified with CREATE, in addition to 140 new mutations in genes involved in the bacterial response to high temperature. Furthermore, several strains that showed high stress tolerance were the result of combinations of two or more single-nucleotide mutations that would not have been detected in normal mutagenesis experiments. The potential of CREATE to identify improved mutant strains can be used to develop new and enhanced biosynthetic abilities for the biological production of fuels and relevant chemicals.

Contacts (BER PM)
Pablo Rabinowicz
Biological and Environmental Research

(PI Contact)
Ryan Gill
Department of Chemical and Biological Engineering
University of Colorado
Boulder, Colorado

This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science award DE-SC0008812. The authors also acknowledge support from the CAPES foundation.

Andrew Garst, Marcelo Bassalo, Gur Pines, Sean Lynch, Andrea Halweg-Edwards, Rongming Liu, Liya Liang, Zhiwen Wang, Ramsey Zeitoun, William Alexander, and Ryan Gill, “Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.” Nature Biotechnology 35, 48 (2017). [DOI: 10.1038/nbt.3718] (Reference link)

Topic Areas:

  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)