U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Co-occurrence of Extremes in Surface Ozone, Particulate Matter, and Temperature Over Eastern North America
Published: March 14, 2017
Posted: May 10, 2017

Observations indicated strong correlations between heat extremes and multiple health-stressors.

The Science
In this paper, using 15 years of surface observations over the eastern United States and Canada, the authors show that the extremes cluster together in often overlapping large-scale episodes, and that the largest episodes have the hottest temperatures and highest levels of pollution.

The Impact
Exposure to extreme temperatures and high levels of the pollutants ozone and particulate matter poses a major threat to human health. Heat waves and pollution episodes share common underlying meteorological drivers and thus often coincide, which can synergistically worsen their health impacts beyond the sum of their individual effects. Furthermore, there is evidence that pollution episodes and heat waves will worsen under warmer conditions, making it imperative to understand the nature of their co-occurrence.

Summary
Heat waves and air pollution episodes pose a serious threat to human health and may worsen under future climate change. In this paper, we use 15 years (1999-2013) of commensurately 1°x1°- gridded surface observations of extended summer (April-September) surface ozone (O3), fine particulate matter (PM2.5), and maximum temperature (TX) over the eastern United States and Canada to construct a climatology of the coincidence, overlap, and lag in space and time of their extremes.  Extremes of each quantity are defined climatologically at each grid cell as the 50 days with the highest values in three 5-yr windows (˜(95th %ile). Any two extremes (O3X, PMX, TXX) occur on the same day in the same grid cell more than 50% of the time in the northeastern United States.  Many extremes show connectedness with consistent offsets in space and in time, which often defy traditional mechanistic explanations.  All three extremes occur primarily in large-scale, multi-day, spatially connected episodes with scales of >1,000 km and clearly coincide with large-scale meteorological features.  The largest, longest-lived episodes have the highest incidence of co-occurrence and contain extreme values well above even their local threshold (95th%), by +7 ppb for O3, +6 µg m-3 for PM2.5, and +1.7 °C for TX.  The results demonstrate the need to evaluate these extremes as synergistic co-stressors to accurately quantify their impacts on human health.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling Program
Dorothy.Koch@science.doe.gov

(PI Contact)
Michael Prather
UC-Irvine

Funding
The U.S. Department of Energy Office of Science, Biological and Environmental Research, Earth System Modeling

Publication
Schnell, JL; & Prather, MJ. (2017). Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America.. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2854 - 2859. doi: 10.1073/pnas.1614453114. UC Irvine: 1817348. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)