U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Representing Floodplain Inundation in an Earth System Model
Published: March 23, 2017
Posted: May 10, 2017

Researchers use a macroscale inundation formulation to improve modeling of terrestrial surface hydrology in the Amazon basin.

The Science
Extreme events such as river inundation have extraordinary effects on terrestrial hydrology and aquatic ecosystems, but surface hydrology in basins with evident inundation can present modeling challenges. A research team led by scientists at the U.S. Department of Energy’s Pacific Northwest National Laboratory implemented a method to represent floodplain inundation in a river transport model.

The Impact
Researchers extended the Model for Scale Adaptive River Transport (MOSART), a key component of the DOE Accelerated Climate Modeling for Energy (ACME) earth system model, to include a macroscale inundation parameterization (formulation) for representing floodplain inundation. The extended model demonstrated improvement in modeling terrestrial surface hydrology in the Amazon River basin, where seasonal floods occur every year, with large impacts on the regional water and biogeochemical cycles. By representing floodplain inundation and refining geomorphological parameters and the river flow representation, researchers improved modeling of streamflow and inundation extent, which provides a foundation for predicting the impacts of global change on water resources and flood hazards in earth system models.

Summary
In this research, scientists implemented a macroscale inundation parameterization and integrated it with the MOSART surface-water transport model. When rivers overflowed their banks, the inundation parameterization estimated the amount of the river-floodplain water exchange, as well as the flooded area within each grid cell or watershed. Researchers applied the model to the Amazon basin, where floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy, and carbon cycles. Scientists addressed four aspects of the challenges in continental-scale modeling of surface hydrology by (1) reducing the vegetation-induced biases (offsets from observations) in the digital elevation model data; (2) improving the approach for estimating channel cross-sectional geometry to better represent the spatial variability in channel geometry; (3) accounting for how riverbed resistance to river flow varies with the river size; and (4) considering the backwater effects to improve simulation of river flow in gentle-slope reaches. Researchers evaluated the model performance by using in situ streamflow records and satellite data of water level and inundation area. A sensitivity study showed that representing floodplain inundation, as well as refining floodplain topography, channel geometry and river flow representation, could significantly improve modeling of surface hydrology in the Amazon basin.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling Program
Dorothy.Koch@science.doe.gov

(PI Contact)
L. Ruby Leung
Pacific Northwest National Laboratory
Ruby.Leung@pnnl.gov

Funding
The U.S. Department of Energy Office of Science, Biological and Environmental Research supported this research as part of the Accelerated Climate Modeling for Energy (ACME) project of the Earth System Modeling (ESM) program.

Publication
X. Luo, H-Y Li, L.R. Leung, T.K. Tesfa, A. Getirana, F. Papa, L.L. Hess, “Modeling Surface Water Dynamics in the Amazon Basin Using MOSART-Inundation v1.0: Impacts of Geomorphological Parameters and River Flow Representation.” Geoscientific Model Development 10, 1233-1259 (2017). [DOI: 10.5194/gmd-10-1233-2017] (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)