U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Minority Researcher, Trained With NABIR Support, Publishes in Key Scientific Journals
Published: March 13, 2002
Posted: March 26, 2002

One of the Natural and Accelerated Bioremediation Research (NABIR) Program's most visible success stories is Dr. James Scott. Scott, an African-American microbiologist, originally worked as an undergraduate technician on a NABIR-funded project with Dr. Kenneth Nealson, then at the University of Wisconsin-Milwaukee. Nealson encouraged Scott to continue the project for his PhD thesis. His thesis research, published in the Journal of Bacteriology and the journal Applied Environmental Microbiology, was on the metabolism of a one-carbon compound (formate) by the soil bacterium Shewanella, which displays differing activities in the presence and absence of oxygen (as in subsurface environments). In the absence of oxygen, Shewanella metabolizes, and precipitates uranium or other metals. The organism is now studied by several NABIR researchers and could serve as a basis for bioremediation of soils and sediments at DOE sites contaminated with these materials. Scott's latest publication, describing formate metabolism and survival by Shewanella at very high pressure or within ice, recently appeared in the highly respected journal Science. The results, widely reported on national news, suggest that Shewanella may play a quantitatively important role in precipitating uranium and other metals in deep soils, sediments, and other geological formations. Dr. Scott is a highly visible example of DOE's efforts to expand and diversify the U.S. scientific workforce. BER's support has been integral to his professional success, and has contributed to NABIR's success by describing the physiology of an organism that may be critical to the development of bioremediation strategies to immobilize metal and radionuclide contaminants in subsurface environments at DOE sites.

Contact: Brendlyn Faison, SC-74, 3-0042
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Cross-Cutting: Lectures, Awards, and Recognition

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-74 Environmental Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)