U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Scientists Program Yeast to Turn Plant Sugars into Biodiesel
Published: January 16, 2017
Posted: May 03, 2017

Yarrowia cells, at the initiation of lipogenesis, metabolically engineered to overproduce oil. [Image courtesy Stephanopoulos Lab, Massachussetts Institute of Technology]

Redox metabolism was engineered in Yarrowia lipolytica to increase the availability of reducing molecules needed for lipid production.

The Science  
With the depletion of fossil fuels, biodiesel precursors produced by oleaginous (oil-producing) yeast from renewable carbohydrates are a promising alternative to fossil- and food-crops-derived fuels. However, production yields are still too low to be commercially competitive. In a new study, researchers achieved a 25% improvement in lipid production, relative to existing oil-producing yeast strains, by rewiring the metabolism in a naturally high lipid producing yeast.

The Impact
Diesel is used to power large vehicles (e.g., trucks) and is a sought after fuel source due to its high fuel efficiency and energy density. Until now, advances in microbial production of biodiesel were not significant enough to make it close to a commercially viable option. The titer, yield, and productivity of oil achieved in an engineered strain of Y. lipolytica using sugar as substrate are now close to those required to make microbial carbohydrate conversion into fuels commercially viable.

Researchers at the Massachusetts Institute of Technology used a mathematical model to identify the oil production bottlenecks in the industrial yeast Y. lipolytica. With information provided by the model, they designed several metabolic engineering strategies to increase conversion of surplus NADH (a product of glucose degradation) to NADPH, which is needed for lipid biosynthesis. Of the strategies tested, a combination of two were the most effective in lipid yield improvement. By introducing heterologous yeast and bacterial glyceraldhyde-3-phosphate dehydrogenase (GDP) genes that utilize NADP+ instead of NAD+ w into Y. lipolytica and overexpressing a bacterial malic enzyme (MCE2) in the GDP-expressing strain, an improvement of 25% over previously engineered yeasts was observed. In addition, as the engineered Y. lipolytica required less oxygen, it could be grown at higher density in the bioreactor, further increasing biomass and lipid yields. The redox engineering approach reported in this work could be optimized for converting plant biomass into biofuel precursors and other Department of Energy-relevant bioproducts.

(BER Contact)
Pablo Rabinowicz
Biological Systems Science Division
Office Biological and Environmental Research
U.S. Department of Energy

(PI Contact)
Gregory Stephanopoulos
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under award DE-SC0008744.  

K. Qiao, T. M. Wasylenko, K. Zhou, P. Xu, and G. Stephanopoulos, “Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism.” Nature Biotechnology 35, 173 (2017). [DOI: 10.1038/nbt.3763] (Reference link)

Related Links
MIT Press Release: A step towards renewable diesel

Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Biosystems Design
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)