U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Using Microbial Community Gene Expression to Highlight Key Biogeochemical Processes
Published: January 25, 2017
Posted: April 27, 2017

A study of gene expression in an aquifer reveals unexpectedly diverse microbial metabolism in biogeochemical hot spots.

The Science
Researchers conducted a study of naturally reduced zones (NRZs)—biogeochemical hot spots—in the Rifle, Colo., aquifer, a legacy Department of Energy uranium mill site. They performed a state-of-the-art analysis of gene expression in the aquifer’s microbial communities, elucidating metabolic pathways and organisms underlying observed biogeochemical phases as well as revealing unexpected metabolic activities.

The Impact
NRZs, organic-rich deposits heterogeneously distributed in alluvial aquifers, modulate aquifer redox status and influence the speciation and mobility of metals. Overall, NRZs have an outsized effect on groundwater geochemistry. This study’s results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.

Organic matter deposits in alluvial aquifers have been shown to result in the formation of NRZs, which can modulate aquifer redox status and influence the speciation and mobility of metals, significantly affecting groundwater geochemistry. In this study, researchers sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (or NRZs) in a shallow alluvial aquifer at the Rifle site. The researchers conducted an anaerobic microcosm experiment in which NRZ sediments served as the sole source of electron donors and microorganisms. Biogeochemical data indicated that native organic matter decomposition occurred in different phases, beginning with the mineralization of dissolved organic matter (DOM) to carbon dioxide (CO2) during the first week of incubation. This was followed by a pulse of acetogenesis that dominated carbon flux after two weeks. DOM depletion over time was strongly correlated with increases in the expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (roughly 8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, dihydrogen (H2) oxidation, sulfur compound oxidation, and denitrification. The acetogenesis pulse appeared to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase.  Unexpected genes were identified among the most highly expressed (more than 98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates.  Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.

Contacts (BER PM)
David Lesmes

(PI Contact)
Harry R. Beller
Senior Scientist, Lawrence Berkeley National Laboratory

This work was supported as part of the Subsurface Biogeochemical Research Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-AC02-05CH11231. This work used the Vincent J. Coates Genomics Sequencing Laboratory at the University of California, Berkeley, supported by the National Institutes of Health S10 instrumentation grants S10RR029668 and S10RR027303.  

Jewell, T. N. M., U. Karaoz, M. Bill, R. Chakraborty, E. L. Brodie, K. H. Williams, and H. R. Beller. 2017. “Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer,” Frontiers in Microbiology, DOI: 10.3389/fmicb.2017.00040. (Reference link)

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)