U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Clay Minerals and Metal Oxides Can Change How Uranium Travels Through Sediments
Published: December 14, 2016
Posted: April 21, 2017

Redox transformations that affect the environmental mobility of metal or radionuclide contaminants typically occur in the presence of mineral or biological surfaces. [Image courtesy of Argonne National Laboratory]

The molecular form of reduced uranium in the subsurface is affected by common sediment constituents.

The Science 
Clay minerals are ubiquitous native components of sediments and soils, as well as a material used in the engineered barriers of spent nuclear fuel storage facilities. A recent study examined the molecular form of uranium(IV) in the presence of montmorillonite clays and found that they can inhibit the predicted precipitation of the mineral uraninite.

The Impact
The effect of environmental surfaces on the form of reduced uranium is currently not accounted for in computational models. This study used state-of-the-art spectroscopy techniques to provide the molecular-level information needed for accurate prediction of uranium transport in subsurface environments.

Summary
Uranium mobility in the subsurface depends strongly on its oxidation state, with U(IV) being significantly less soluble than U(VI). However, solubility also depends on the contaminant’s molecular form, which can be affected by adsorption to the surface of minerals, bacterial membranes, and other constituents in the surrounding environment. Researchers examined the ability of montmorillonite clay minerals to adsorb U(IV) resulting from the reduction of U(VI) and compared it to that of iron and titanium oxide surfaces. The valence and molecular structure of U was tracked by synchrotron x-ray absorption spectroscopy. Findings showed that at low clay surface:U ratios, the reduction of U(VI) in the presence of SYn-1 montmorillonite leads to the formation of the mineral uraninite (UO2). However, at high clay surface:U ratios (more typical of environmental conditions), a significant fraction of the resulting U(IV) is present as adsorbed U(IV) ions (up to 50% of total U). The threshold U(IV) surface coverage above which uraninite formation begins was determined to be significantly lower for montmorillonite than for iron or titanium oxides, suggesting that metal oxides may play a more important role than clay minerals in stabilizing the nonuraninite species observed in natural sediments.

Contacts (BER PM)
Dr. Roland F. Hirsch
Program Officer, U.S. DOE Office of Science
roland.hirsch@science.doe.gov; (301) 903-9009

(PI Contact)
Dr. Kenneth M. Kemner
Argonne National Laboratory
kemner@anl.gov; (630) 252-1163

Funding
This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory (ANL), which is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research program. Use of the Electron Microscopy Center at ANL and the Advanced Photon Source is supported by DOE’s Office of Science, Office of Basic Energy Sciences. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. All work at ANL was under contract DE-AC02-06CH11357.

Publication
M. I. Boyanov, D. E. Latta, M. M. Scherer, E. J. O’Loughlin, and K. M. Kemner, “Surface area effects on the reduction of UVI in the presence of synthetic montmorillonite.” Chemical Geology (2017). [DOI: 10.1016/j.chemgeo.2016.12.016] (Reference link)

Related Links
Subsurface Science Scientific Focus Area at Argonne National Laboratory

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Research Technologies and Methodologies

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)