U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Observational Needs for Estimating Alaskan Soil Carbon Stocks Under Current and Future Climate
Published: February 21, 2017
Posted: April 21, 2017

Distribution of optimized sample locations for characterizing whole-profile soil organic carbon stocks across Alaska under present climate at a confidence interval of 5 kg C m-2. Green triangles show the locations where new observations are needed and red dots show recommended sites represented by existing observations. [Image reprinted under a Creative Commons Attribution License (CC BY) from Vitharana, U.W.A., et al. 2017. “Observational Needs for Estimating Alaskan Soil Carbon Stocks Under Current and Future Climate,” Journal of Geophysical Research: Biogeosciences, DOI: 10.1002/2016JG003421. Copyright 2017 Vitharana, Mishra, Jastrow, Matamala, and Fan]

A geospatial analysis optimized the distribution of observation locations needed for reducing uncertainties in soil carbon stock estimates.

The Science 
Researchers used a geospatial approach that integrates existing observations with the multivariate spatial heterogeneity of soil-forming factors. The approach was developed to identify the optimal number and spatial distribution of observation sites needed to improve estimates of soil organic carbon stocks under current and projected future climatic conditions.

The Impact
The magnitude, vulnerability, and spatial distribution of soil carbon stocks are major sources of uncertainty in projected carbon-climate feedbacks attributed to the permafrost region. Study results provide a spatially optimized set of locations designed to guide new field observations for constraining the uncertainties in soil carbon estimates and providing robust spatial benchmarks for Earth system model results.

Summary
Representing land surface spatial heterogeneity is a scientific challenge that is critical for designing observation schemes to reliably estimate soil properties. Researchers led by Argonne National Laboratory developed a geospatial approach to identify an optimum distribution of observation sites for improving the characterization of soil organic carbon stocks across Alaska. By using environmental data expected to influence soil formation as proxies for representing the spatial distribution of soil organic carbon stocks, the scientists determined that complementing data from existing samples with 484 new observation sites would be needed to characterize average whole-profile soil organic carbon stocks across Alaska at a confidence interval of 5 kg C m-2. Estimates to depths of 0 m to 1 m and 0 m to 2 m with the same level of confidence would require 309 and 446 new observation sites, respectively. New observation needs are greater for scrub (mostly tundra) than forest land cover types, and ecoregions in southwestern Alaska are among the most under-sampled. The number and locations of required observations are not greatly altered by changes in climatic variables through 2100 as projected by Intergovernmental Panel on Climate Change emission scenarios. Study results serve as a guide for future sampling efforts to reduce existing uncertainty in soil organic carbon observations and improve benchmarks for Earth system model results.

Contacts (BER PM)
Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Julie D. Jastrow
Argonne National Laboratory
jdjastrow@anl.gov (630-252-3226)

(Corresponding Author Contact)
Umakant Mishra
Argonne National Laboratory
umishra@anl.gov (630-252-1108)

Funding
This study was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Terrestrial Ecosystem Science program under contract DE-AC02-06CH11357 to Argonne National Laboratory.

Publication
U. W. A. Vitharana, U. Mishra, J. D. Jastrow, R. Matamala, and Z. Fan, “Observational needs for estimating Alaskan soil carbon stocks under current and future climate.” Journal of Geophysical Research: Biogeosciences (2017). [DOI:10.1002/2016JG003421] (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)