U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights



Phosphate Stress and Immunity Systems in Plants are Orchestrated by the Root Microbial Community
Published: March 15, 2017
Posted: April 19, 2017


Synthetic Bacterial Community Induces Typical Phosphate Starvation Phenotypes in Arabidopsis. Phenotypes of plants lacking phosphate in the presence of a 35-member synthetic community (+ Synthetic Community) or in matching axenic conditions (No Bacteria). Typical responses to phosphate starvation, including shorter primary roots and stunted shoots, are exacerbated in the presence of the bacterial community. [Image courtesy Castrillo et al. 2017. “Root Microbiota Drive Direct Integration of Phosphate Stress and Immunity,” Nature 543, 513-518. DOI: 10.1038/nature21417.]


Better understanding of these plant-microbe interactions could lead to improved bioenergy feedstocks.

The Science 
The microbial community associated with plant roots coordinates the simultaneous response of plants to both nutrient stress and disease. In a recent study, researchers established that a genetic network controlling the phosphate stress response influences how the root microbiome community is structured, even under nonstress phosphate conditions.

The Impact
Understanding how plants interact with beneficial soil microbial communities may lead to novel approaches for breeding high-yielding bioenergy feedstocks on marginal lands with few inputs. This study, for the first time, provides evidence that genes controlling phosphate starvation response (PSR) and plant defense regulation are coordinated.

Summary
To become a sustainable and viable source of biofuels, biomass feedstock crops must be capable of high productivity on marginal lands not fit for food crop production. Nutrients such as phosphorus are critical to plant productivity but are scarce in low-fertility soils, so breeding biomass plants that efficiently utilize nutrients even in nutrient-depleted soils is critical to their use as a sustainable and cost-effective bioenergy resource. Plants form intimate associations with the soil microbial communities that surround their root systems. These communities are diverse and can contain both pathogenic microbes that compete with the plant for nutrients as well as beneficial microbes that increase plant health, vigor, and productivity. Soil nutrient content can influence the composition of the microbial community, but the mechanisms are unknown. Researchers at the University of North Carolina at Chapel Hill, with partial funding from the U.S. Department of Energy-U.S.Department of Agriculture Plant Feedstocks Genomics for Bioenergy program, used mutants of the model plant Arabidopsis thaliana with altered PSR to show that genes controlling PSR contribute to normal root microbiome assembly. They discovered that the regulatory gene PHR1 can fine-tune this response. They further showed that PSR regulation and pathogen defense are coordinated, providing insight into the coordinated interchange of plant response to nutritional stress, the plant immune system, and the root microbiome, as well as a foundational basis for using the soil microbiome to enhance phosphate use efficiency in plants.

Contacts (BER PM)
Cathy Ronning
SC-23.2
catherine.ronning@science.doe.gov

(PI Contact)
Jeffery L. Dangl
University of North Carolina at Chapel Hill
dangl@email.unc.edu

Funding
Partial support for this work was provided by the U.S. Department of Energy-U.S. Department of Agriculture Plant Feedstock Genomics for Bioenergy (award DE-SC001043) and National Science Foundation INSPIRE grant IOS-1343020.

Publication
Castrillo, G., P. J. P. L. Teixeira, S. H. Paredes, T. F. Law, L. de Lorenzo, M. E. Feltcher, O. M. Finkel, N. W. Breakfield, P. Mieczkowski, C. D. Jones, J. Paz-Ares, and J. L. Dangl. 2017. “Root Microbiota Drive Direct Integration of Phosphate Stress and Immunity,” Nature 543, 513-18. DOI: 10.1038/nature21417. (Reference link)

Topic Areas:

  • Research Area: Genomic Analysis and DNA Sequencing
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks
  • Mission Science: Sustainable Biofuels

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Nov 21, 2017
CrunchFlow Receives 2017 R&D 100 Award
Powerful software simulates how chemical reactions occur and change as fluids travel underground. [more...]

Nov 13, 2017
Predicting and Planning for Chronic Climate-Driven Disturbances
Preparing for long-term ecosystem imbalances could help society manage food, water, energy, and o [more...]

Nov 13, 2017
The Power of Traditional Proxies for Measuring the Soil Carbon Cycle
Solid standbys like clay content should not be displaced by new imaging and genetics techniques.< [more...]

Nov 09, 2017
Evaluating Land-Atmosphere Coupling in Earth System Model Simulations
ARM observations were used to evaluate the land-atmosphere coupling in an Earth system model; the [more...]

Nov 03, 2017
Effects of Local Water Extraction and Reservoir Regulation on Drought in the United States
Extreme drought is projected to extend across more of the U.S. as water demand increases.more...]