BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Tracking Genome Expansion in Giant Viruses
Published: April 07, 2017
Posted: April 18, 2017

Giant virus acquiring genes from different eukaryotic host cells. [Image courtesy Ella Maru Studio]

Piecemeal acquisition of genes from hosts may explain the rise of giant viruses.

The Science
The number of microbes in, on, and around the planet is said to outnumber the stars in the sky. The number of viruses found worldwide is at least an order of magnitude greater. As their name suggests, giant viruses are larger than many bacterial and eukaryotic cells. They were first discovered in 2003, and the true breadth of their diversity remains unknown. Researchers recently uncovered a new group of giant viruses after sifting through metagenomic datasets. Dubbed Klosneuviruses, these giant viruses contain a more complete set of translation machinery genes than any other virus known to date.  

The Impact
Contrary to popular belief, most viruses do not affect humans. They do, however, impact microbes, which regulate biogeochemical cycles. Protists such as algae, for example, sequester large fractions of carbon in the atmosphere and are key components of the global carbon cycle. Viruses can significantly impact the productivity of the protist population, reducing their capabilities in regulating global cycles. As protists are thought to be the host of these Klosneuviruses, a better understanding of how viruses impact microbial survival and community interactions is relevant to Department of Energy (DOE) missions in bioenergy and environment.

Summary
While sifting through metagenomic sequence datasets for a DOE Joint Genome Institute (JGI) Community Science Program project, DOE JGI researchers identified genome sequences typically found in giant viruses. A group of giant viruses called Mimiviruses was first discovered in 2003, and a handful of such groups have been reported since. DOE JGI researchers assembled a 1.57-million base (Megabase) genome of a putative virus they called Klosneuvirus, and further searching through the metagenomic datasets uncovered three more related giant virus genomes. Three of the four Klosneuviruses were found with representatives of the protist phylum Cercozoa. This is unusual because until now, all giant viruses had been recovered with Acanthamoeba (amoebas found in soils and fresh waters), which was not seen with the Klosneuviruses. The team also found that the Klosneuviruses encoded components for a far more expansive translation system than had been seen with other giant viruses. Aside from increasing the known gene pool of giant viruses by nearly 2,500 additional gene families, comparing the genes to previously discovered giant viruses revealed that the Klosneuviruses are a subfamily of Mimiviruses. Starting then from their last shared ancestor with the Mimiviruses, the researchers suggest that over time, the Klosneuviruses picked up genes from various different hosts. Overall, the team’s findings lend credence to the theory that giant viruses evolved from much smaller viruses, rather than aligning with theories that they may instead be descended from a cellular ancestor. The consequences of Klosneuvirus infection of protist hosts remains to be explored.

Contacts (BER PM)
Daniel Drell, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
U.S. Department of Energy
daniel.drell@science.doe.gov 

(PI Contact)

Tanja Woyke
Microbial Genomics Program Lead
DOE Joint Genome Institute
twoyke@lbl.gov

Funding
This work was conducted by the U.S. Department of Energy’s (DOE) Joint Genome Institute, a DOE Office of Science user facility (contract number DE-AC02-05CH11231). Additional support was provided by the U.S. Department of Health and Human Services, European Research Council, Austrian Science Fund, and John Templeton Foundation.

Publication
Schulz, F., N. Yutin, N. N. Ivanova, D. R. Ortega, T. K. Lee, J. Vierheilig, H. Daims, M. Horn, M. Wagner, G. J. Jensen, N. C. Kyrpides, E. V. Koonin, and T. Woyke. 2017. “Giant Viruses with an Expanded Complement of Translation System Components,” Science 356(6333), 82-85. DOI: 10.1126/science.aal4657. (Reference link)

Related Links
JGI Earth’s viral diversity
JGI IMG/VR database
JGI Surveying viral populations
JGI Community Science Program

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)