U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Novel Iron-Loving Bacterium from the Deep Subsurface
Published: August 26, 2016
Posted: March 28, 2017

Photo Micrograph of Orenia metallireducens Strain Z6. Inset focus shows peritrichous pili produced by the organism. This bacterium was isolated from groundwater sampled from 2 km deep within the Illinois Basin and can reduce crystalline forms of ferric iron such as goethite and hematite. [Image courtesy Yiran Dong, University of Illinois at Urbana-Champaign]

New research has uncovered the bacterium Orenia metallireducens, a microorganism from 2 km deep underground capable of reducing iron.

The Science                       
A novel microorganism capable of withstanding high temperatures and briny water was isolated from a geological formation located two kilometers deep within the Illinois Basin. This bacterium, dubbed Orenia metallireducens, has many distinctive properties that allow it to reduce iron minerals such as goethite and hematite. These findings expand current knowledge of how bacteria survive in the deep, hostile environments of the terrestrial subsurface and provide further insights into how life might exist on other planetary bodies.

The Impact
The discovery of O. metallireducens expands current knowledge of the metabolic diversity of bacteria that inhabit the subsurface. Previously thought to be largely sterile, researchers now know that microbial life dwells deep within the fractures and pore spaces of rocks that make up Earth’s crust. These bacteria drive many of the biogeochemical cycles that occur within the subsurface, driving the dissolution and precipitation of minerals as well as the breakdown of organic matter. Understanding the microbially driven mechanisms behind these geochemical transformations is essential for parameterizing Earth system models that seek to quantify the flux of carbon between the atmosphere, soil, and subsurface.

Summary
The microbial reduction of ferric iron minerals is widespread in both terrestrial and marine environments and is potentially one of the earliest forms of metabolisms to evolve on Earth. Due to the abundance of ferric minerals in Earth’s crust, Fe(III) reduction is of global environmental significance, particularly in the subsurface where it contributes to water quality, contaminant fate and transport, and the biogeochemical cycling of carbon. Taking groundwater that was sampled from two kilometers deep underground, researchers isolated a novel member of the phylum Firmicutes, named Orenia metallireducens strain Z6. They found O. metallireducens to have numerous unique properties, including the ability to reduce ferric iron minerals across a broad range of temperature, pH, and salinity. O. metallireducens also lacks the c-type cytochromes that are typically present in bacteria capable of reducing ferric iron such as Geobacter and Shewanella species. The researchers also found that O. metallireducens is the only member of the order Halanaerobiales capable of reducing crystalline iron minerals such as goethite and hematite. This study’s results significantly expand the scope of phylogenetic affiliations, metabolic capabilities, and catalytic mechanisms that are known for iron-reducing microorganisms.

Contacts (BER PM)
Dr. Roland F. Hirsch
Program Manager, U.S. Department of Energy Office of Science
roland.hirsch@science.doe.gov; 301-903-9009

(PI Contact)
Dr. Kenneth M. Kemner
Argonne National Laboratory
kemner@anl.gov; 630-252-1163

Funding
This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory (ANL), which is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Subsurface Biogeochemical Research program. Use of the Electron Microscopy Center at Argonne and the Advanced Photon Source is supported by DOE’s Office of Science, Office of Basic Energy Sciences. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. All work at ANL was performed under contract DE-AC02-06CH11357. This work, including the efforts of Y. Dong, R.A. Sanford, R. A. Locke, Jr., and B. W. Fouke, was funded under DE-FC26-05NT42588. Parts of this work, including the efforts of Y. Dong, R. A. Sanford, J. Y. Chang, and B. W. Fouke, was also funded by National Aeronautics and Space Administration (NNA13AA91A).

Publication
Dong, Y., R. A. Sanford, M. I. Boyanov, K. M. Kemner, T. M. Flynn, E. J. O’Loughlin, Y.-J. Chang, R. A. Locke Jr., J. R. Weber, S. M. Egan, R. I. Mackie, I. Cann, and B. W. Fouke. 2016. “Orenia metallireducens sp. nov. strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface,” Applied and Environmental Microbiology 82(21), 6440-453. DOI:10.1128/aem.02382-16. (Reference link)

Related Links
Subsurface Science Scientific Focus Area at Argonne National Laboratory

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)