Genomic Science Program. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Genomic Science Program



Vitamin B12 Plays Broad Role in Cellular Metabolism
Published: January 30, 2017
Posted: March 16, 2017


Researchers explore functions controlled by vitamin B12 and the importance for microbial communities. [Image courtesy Department of Energy’s Environmental Molecular Sciences Laboratory]


Scarce compound is key for microbial growth and may help shape microbial communities.

The Science
Vitamin B12 regulates the production of deoxyribonucleic acid (DNA) and many proteins required for normal cellular function. A recent study revealed that this compound plays an even greater role in cellular metabolism and growth than previously thought, and may even coordinate the behavior of complex microbial communities.

The Impact
The findings suggest that vitamin B12 helps shape microbial communities, which affect wide-ranging processes including energy and food production, the environment, and human health.

Summary
Vitamin B12 is used by all domains of life to control the production of DNA and a variety of proteins that support cellular function, but this vitamin is only produced by certain bacterial and archaeal species. A recent study showed that this compound has an unexpectedly broad influence on metabolic processes important for synthesis of DNA, ribonucleic acid (RNA), and proteins. To explore vitamin B12’s role in a variety of cellular processes, researchers from Pacific Northwest National Laboratory, Sanford-Burnham-Prebys Medical Discovery Institute, and Polytech Nice-Sophia set out to identify which proteins bind to vitamin B12. To do so, they first developed a chemical probe that mimics vitamin B12 and then directly applied the probe to live Halomonas bacterial cells. The researchers next analyzed the probe-labeled proteins using an Orbitrap mass spectrometer at the Environmental Molecular Sciences Laboratory, a Department of Energy Office of Science user facility. They found that the vitamin B12-mimicking probe interacted with 41 different proteins, including enzymes involved in the synthesis and metabolism of another B vitamin called folate, an amino acid called methionine, and a compound called ubiquinone. These metabolic processes, in turn, increase the production of DNA, RNA, and proteins. The findings reveal vitamin B12 plays a more pivotal role in cellular growth and metabolism than previously thought. As a result, this scarce compound may facilitate the coordination of cell behavior in complex microbial communities, shaping their structure, stability, and overall function.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Lee Ann McCue
Environmental Molecular Sciences Laboratory
leeann.mccue@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility; Genome Science Program Foundational Scientific Focus Area at Pacific Northwest National Laboratory; Russian Foundation for Basic Research; and Russian Academy of Sciences.

Publication
M. Romine, D. Rodionov, Y. Maezato, L. Anderson, P. Nandhikonda, I. Rodionova, A. Carre, X. Li, C. Xu, T. Clauss, Y.-M. Kim, T. Metz, and A. T. Wright, “Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism.” Proceedings of the National Academy of Sciences (USA) 114(7), E1205-E1214 (2017). DOI: 10.1073/pnas.1612360114. (Reference link)

Related Links
EMSL Article
PNNL News Release

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Search all BER Highlights

Recent Highlights

May 28, 2018
New Method Helps Predict Metabolite Concentrations, Rate Constants, and Enzyme Regulation Within Cells
Researchers use Neurospora crassa, a reliable model organism, to demonstrate new method [more...]

Jan 18, 2018
Engineering Yeast Tolerance to a Promising Biomass Deconstruction Solvent
Chemical genomic-guided engineering of gamma-valerolactone-tolerant yeast. more...]

Nov 16, 2017
Aerobic Wetlands Emit High Levels of Methane
Genomic analysis reveals a novel methanogenic microbial species that is a significant contributor [more...]

Oct 19, 2017
Bacteria Use Multiple Enzymes to Degrade Plant Biomass
Analyses reveal how bacteria degrade lignin and provide better understanding for producing biofue [more...]

Oct 14, 2017
Seasonal Below-Ground Metabolism in Switchgrass
Understanding winter survival in a perennial bioenergy grass. The Sciencemore...]