U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Extending the Life of Lithium-Ion Batteries
Published: January 16, 2017
Posted: March 16, 2017

Scientists recently discovered what limits the cycle life of lithium-ion batteries. [Image courtesy Pacific Northwest National Laboratory]

A recent study offers new insights into how lithium-ion battery cathodes fail.

The Science
Cathode materials in lithium-ion batteries lose structural integrity after repeated charge-discharge cycling, resulting in voltage fading and capacity loss. A recent study shed new light on the process of cathode degradation, revealing high-voltage cycling as the driving force leading to cracks inside grains that make up the cathode.

The Impact
By identifying mechanisms of electrode degradation in lithium-ion batteries, the study could lead to the design of superior cathode materials that improve battery performance for powering electric vehicles and storing renewable energy on the grid.

Summary
Rechargeable lithium-ion batteries are common in portable electronics and in today’s plug-in hybrid electric vehicles. One of the most attractive cathode materials in these batteries is layer-structured lithium transition metal oxide. However, this material suffers from capacity and voltage fade during battery cycling, limiting its performance. Furthermore, the underlying mechanisms for this failure are not fully understood. To address this challenge, researchers from Pacific Northwest National Laboratory used electron microscopy to directly monitor the structural evolution of the electrode at the atomic level and in unprecedented detail. The researchers used the aberration-corrected scanning transmission electron microscope at the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy Office of Science user facility. They discovered that intragranular cracks form inside the cathode of lithium-ion batteries. Moreover, they found that high-voltage cycling is the direct driving force for the generation of these cracks, which limit the battery’s cycle life. When the cycle voltage exceeded a certain threshold, significant cracks formed inside the grains making up the cathode, compromising structural stability. This finding is in sharp contrast to theoretical models predicting that these cracks form at grain boundaries or on particle surfaces. Taken together, the results suggest mitigation of intragranular cracking requires a stable structural framework of the cathode material and carefully controlled cycling conditions. For high-voltage applications, efforts must be made to adjust the material’s chemistry and structure to minimize internal grain strain during charge and discharge cycling. In the end, these findings could generate new strategies to design stable, safe lithium-ion batteries with high energy density and a long cycle life.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Chongmin Wang
Environmental Molecular Sciences Laboratory
Chongmin.Wang@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory, an Office of Science user facility; and DOE’s Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, Advanced Battery Materials Research program.

Publication
P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang, and C.-M. Wang, “Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries.” Nature Communications 8 (2016). DOI: 10.1038/ncomms14101. (Reference link)

Related Links 
EMSL Article

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)