U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Multiple Observational and Modeling Perspectives Reveal Key Factors Controlling Arctic Cloud Phases
Published: November 23, 2016
Posted: January 26, 2017

The North Slope of Alaska atmospheric observatory provides data about cloud and radiative processes at high latitudes. [Image courtesy Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility]

Teamwork provides insight into complicated cloud processes.

The Science
Observations over the last half century show that the Arctic environment has changed at a faster rate than the rest of the planet. Clouds have important impacts on the surface energy budget and, thus, on the melting or growth of land- and ocean-based ice, so they may play a key role in these changes. Many Arctic clouds are “mixed-phase,” consisting of both ice and liquid particles simultaneously. Correctly predicting the partitioning of mass and transitions between these two phases is critically important for understanding cloud impacts on Arctic climate because ice particles and liquid droplets impact atmospheric radiative transfer in substantially different ways.

The Impact
A team of scientists, primarily funded by the Department of Energy’s (DOE) Atmospheric System Research activity, developed a working group on cloud phase to bring together expertise from multiple observational and modeling perspectives and determine the key processes that control cloud phase partitioning. The team chose to a focus on a persistent stratiform mixed-phase cloud observed at DOE’s Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, on March 11-12, 2013. This case is of particular interest because substantial temporal variability in the liquid-cloud layer and associated ice precipitation was observed during the cloud’s 37-hour duration. The team found that major influences on the cloud were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing ice particle residence time. Other factors (e.g., radiative shielding by a cirrus cloud and the influence of the solar cycle) played only a minor role in this specific case study.

Summary
The team used an extensive suite of ground-based remote-sensing instruments, including lidar and multifrequency vertically pointing and scanning radars operated at the ARM North Slope of Alaska atmospheric observatory in Barrow, combined with information on aerosol light scattering and absorption from National Oceanic and Atmospheric Administration instruments. To provide large-scale context for the case study and to examine important processes in more detail, multiple model approaches were employed. Limited area model simulations are used to identify processes that cause the descent of the cloud layer as well as the role of surface and large-scale forcing in the observed precipitation and phase partitioning transitions. Short-term forecasts from the Monitoring Atmospheric Composition and Climate (MACC) model are used to gain a wider perspective on aerosol transport at and around Barrow during the case study period, and help understand to what degree locally observed shifts in aerosol amount and type might be attributed to advection versus local processing.

During the 37-hour duration of the mixed-phase cloud over Barrow, substantial temporal variability in the liquid-cloud layer and associated ice precipitation was observed. Observational and modeling resources were brought together to understand the processes that control the cloud-phase partitioning and its transition in time. Evidence suggests that three main factors contributed to the abrupt change in phase partitioning for this case study: (1) Large-scale advection of different air masses with different moisture content and indications of different aerosol concentrations played a role. During the time of highest ice and liquid water contents, the airmass over Barrow had a relatively high aerosol concentration and was supported by moist advection at cloud level. (2) Cloud-scale processes, specifically the cloud-surface thermodynamic coupling state, changed at the time of this airmass transition. (3) Model simulations suggest that the ice particle residence time, which is linked to local-scale dynamics, also was important in the change of phase partitioning. The simulated ice water path was found to be higher during times of strong updrafts that dominated during the early part of the case study. After the transition, updrafts weakened and ice crystals fell more quickly from the cloud system. The radiative shielding of a cirrus cloud on March 12 and the influence of the solar cycle were found to be of minor importance for turbulence modulation in the mixed-phase cloud, and thus likely did not play key roles in the transition. A lack of observations of aerosol properties, including ice nuclei concentrations and vertical profiles of aerosol particle concentrations and size, poses a large challenge for understanding phase transitions. Additionally, this case study suggests that the interplay of aerosol-induced cloud microphysical properties with cloud dynamic and thermodynamic processes also may be critically important.

Contacts (BER PM)
Sally McFarlane
Atmospheric Radiation Measurement Climate Research Facility Program Manager
Sally.McFarlane@science.doe.gov

Shaima Nasiri
Atmospheric System Research Program Manager
Shaima.Nasiri@science.doe.gov

(PI Contact)
Heike Kalesse
Leibniz Institute for Tropospheric Research
kalesse@tropos.de

Gijs de Boer
University of Colorado
gijs.deboer@noaa.gov

Funding
H. Kalesse conducted this study within the framework of the DFG project COMPoSE, GZ: KA 4162/1-1. G. de Boer contributed to this research under funding from the U.S. Department of Energy’s (DOE) Atmospheric System Research (ASR) program (project numbers: DE-SC0008794 and DE-SC0013306), as well as the U.S. National Science Foundation (ARC 1203902). M. Shupe was supported by DOE ASR grant DE-SC0011918. M. Ahlgrimm’s contribution to this work was supported by DOE ASR grant DE-SC0005259. This research also was supported in part under DOE ASR grants DE-SC00112704 (E. Luke) , DE-SC0013953 (M. Oue), and DE-SC0006974 and DE-SC0014239 (D. Zhang).

Publication
H. Kalesse, G. DeBoer, A. Solomon, M. Oue, M. Ahlgrimm, D. Zhang, M. Shupe, E. Luke, and A. Protat, "Understanding rapid changes in phase partitioning between cloud liquid and ice in stratiform mixed-phase clouds: An Arctic case study." Monthly Weather Review 144, 4805-826 (2016). DOI: 10.1175/MWR-D-16-0155.1. (Reference link)

Facility
ARM

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)