U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Assessing Lidar for Measuring Atmospheric Turbulence
Published: March 16, 2016
Posted: January 26, 2017

Researchers deployed multiple lidars at the Atmospheric Radiation Measurement Southern Great Plains atmospheric observatory to explore different strategies for measuring atmospheric turbulence at wind turbine hub heights.

The Science
For planning purposes, wind energy providers need accurate assessments of wind resources available at a given site. Such assessments require estimates of wind speeds and turbulence at the height of a turbine rotor disk, 40 to 120 meters above the ground. Traditionally, these measurements have been made with cup anemometers on tall meteorological towers. However, as wind turbines grow taller, building meteorological towers that reach these heights has become more difficult and costly. In response, scientists are exploring the use of remote-sensing devices (e.g., Doppler lidar) to assess wind resources. In this study, scientists explored the use of two different multi-lidar scanning strategies, known as the tri-Doppler technique and virtual tower technique, for measuring atmospheric turbulence.

The Impact
Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure high-resolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.

Summary
To evaluate the ability of multi-lidar scanning strategies to measure wind speeds and three-dimensional turbulence, three scanning lidars and a vertically profiling WindCube lidar were operated during the summer of 2013 at the Southern Great Plains Atmospheric Radiation Measurement (ARM) Climate Research Facility site, a field measurement site located in northern Oklahoma and instrumented with various in situ and remote-sensing devices. This work marks the first time the tri-Doppler and virtual tower techniques have been evaluated under vastly different stability conditions at the same site and compared with measurements from a commercially available lidar. The evaluation of both techniques at the same site enables comparison of the techniques under similar atmospheric conditions while utilizing the same scanning lidars for both techniques. Comparisons with data obtained from a commercially available lidar are extremely valuable, as they directly indicate any advantage of using a multi-lidar scanning technique as opposed to a single commercially available lidar.

Contacts (BER PM)
Sally McFarlane
Atmosperic Radiation Measurement Climate Research Facility Program Manager
Sally.McFarlane@science.doe.gov

 (PI Contact)
Jennifer Newman
National Wind Technology Center
National Renewable Energy Laboratory
Jennifer.Newman@nrel.gov

Funding

Data were obtained from the Atmospheric Radiation Measurement Climate Research Facility, a U.S. Department of Energy Office of Science user facility sponsored by the Office of Biological and Environmental Research. J. F.N. and S.W. received funding from Laboratory Directed Research and Development award 12-ERD-069 from Lawrence Livermore National Laboratory.

Publication
Newman, J. F., T. A. Bonin, P. M. Klein, S. Wharton, and R. K. Newsom. 2016. "Testing and Validation of Multi-Lidar Scanning Strategies for Wind Energy Applications," Wind Energy 19(12), 2239-254. DOI: 10.1002/we.1978. (Reference link)

Facility
ARM

Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)