U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Vertical Air Motions and Raindrop Size Distributions Estimated Using Mean Doppler Velocity Differences
Published: July 07, 2016
Posted: January 26, 2017

Scientists developed a new technique for combining measurements from two vertically pointing radars for cloud and precipitation studies.

The Science 
How raindrops in a cloud break apart and coalesce affects the total amount and intensity of precipitation from the cloud, but these processes are not well represented in models. To improve modeling of raindrop breakup and coalescence processes, innovative retrieval techniques are needed to convert radar observations from the Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility into vertical columns of air motion and raindrop size distributions. A new retrieval technique developed by scientists supported under DOE’s Atmospheric System Research program exploits the Mie scattering signatures in the Ka-band ARM zenith radar (KAZR) to estimate air motion and raindrop size distributions.

The Impact
Vertically pointing radars observe the net raindrop radial motion, which is a combination of falling raindrops embedded in updrafts and downdrafts. It is difficult to isolate air motion from raindrop motion using a single radar. By using two radars operating at different frequencies (which have difference sensitivities to Rayleigh and Mie scattering), differences in radial velocities are due to differences in the shape of the raindrop size distributions, while similar variations contained in both radial velocities are due to vertical air motion variations.

Summary
A new retrieval technique estimating air motion and raindrop size distributions and associated uncertainties was developed and verified using 3- and 35-GHz radar observations collected during the Midlatitude Continental Convective Clouds Experiment (MC3E) field campaign at ARM’s Southern Great Plains atmospheric observatory. The retrieval technique can be applied to different pairs of ARM radar frequencies, including radar wind profiler (RWP) and KAZR (0.915 and 35 GHz), RWP and W-band (0.915 and 95 GHz), and KAZR and W-band (35 and 95 GHz). The ability to retrieve air motion and raindrop size distributions from multiple sites over many seasons will enable better understanding of the processes of raindrop breakup and droplet coalescence and improved model representations.

Contacts (BER PM)
Shaima Nasiri
Atmospheric System Research Program
Shaima.Nasiri@science.doe.gov

Sally McFarlane
Atmospheric Radiation Measurement Climate Research Facility
Sally.McFarlane@science.doe.gov       

(PI Contact)
Christopher Williams
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder
christopher.williams@colorado.edu

Funding
This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric System Research program under grants DE-SC0007080 and DE-SC0014294. Further support came from the National Aeronautics and Space Administration Precipitation Measurement Mission under grants NNX13AF89G and NNX16AE42G.

Publication
Williams, C. R., R. M. Beauchamp, and V. Chandrasekar. 2016. "Vertical Air Motions and Raindrop Size Distributions Estimated Using Mean Doppler Velocity Difference from 3- and 35-GHz Vertically Pointing Radars," IEEE Transactions on Geoscience and Remote Sensing 54(10). DOI: 10.1109/TGRS.2016.2580526. (Reference link)

Related Links
PI-submitted ASR research highlight

Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)