Genomic Science Program. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Genomic Science Program



Microbial Community Interactions Drive Methane Consumption in Lakes
Published: December 27, 2016
Posted: January 24, 2017


Diverse microbial communities consume methane produced as a byproduct during decomposition of plant matter in lake sediments. Image courtesy of iStock


Understanding interactions among organisms in complex microbial communities sheds new light on globally significant environmental processes.

The Science  
Large amounts of methane, a potent greenhouse gas, are produced as a byproduct during decomposition of plant matter in the sediments of lakes and wetlands. Bacteria known as methanotrophs consume much of this methane before it can enter atmosphere. In a recent study, researchers examined community interactions among methanotrophs and other types of microbes that control this important process.

The Impact
The biological mechanisms underlying many important environmental processes can be understood only by examining cooperative processes performed by diverse communities of microbes. This study uses an elegantly constructed model experiment and genomic analysis to examine the genetic basis of these interactions and determine how they influence microbial consumption of methane in lake sediments.

Summary
Several decades of research have demonstrated the importance of bacterial methanotrophs in carbon cycling processes of lakes, wetlands, and a variety of other environments. However, methanotrophs exist as members of diverse communities of regularly co-occurring non-methanotrophic microbes, and the roles of these organisms in methane cycling are not well understood. In a recent study, researchers at the University of Washington assembled an experimental model community of methanotrophs and associated non-methanotrophic microbes previously isolated from lake sediments. Using a community-scale metaomics analysis of shifts in gene expression, the team tracked how the associated organisms influenced each other during methane-driven growth. The presence of non-methanotrophs was shown to trigger an enzymatic and metabolic shift in the methanotrophs, resulting in conversion of a portion of the available methane into methanol, which was released to fuel the growth of these microbes. Not yet clear is if the methanotrophs derive some form of reciprocal benefit from this “cross-feeding,” or if this represents a type of parasitism. In either case, these findings considerably alter current understanding of methanotrophy as it occurs in complex environmental communities and suggest that much remains to be learned about the basic biological mechanisms driving an important element of the global carbon cycle.

Contacts (BER PM)
Dr. Joseph Graber
DOE Office of Biological and Environmental Research, Biological Systems Science Division
joseph.graber@science.doe.gov

(PI Contact)
Dr. Mary Lidstrom
University of Washington
lidstrom@u.washington.edu

Funding
This study was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science program under award DE-SC-0010556.

Publication
S. M. B. Krause, T. Johnson, Y. S. Karunaratne, Y. Fu, D. A. C. Beck, L. Chistoserdova, and M. E. Lidstrom, “Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions.” Proceedings of the National Academy of Sciences (USA) 114(2), 358-63 (2017). DOI: 10.1073/pnas.1619871114. (Reference link)

Topic Areas:

  • Research Area: Carbon Cycle, Biosequestration
  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and DNA Sequencing
  • Research Area: Microbes and Communities
  • Mission Science: Climate

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Search all BER Highlights

Recent Highlights

Aug 01, 2017
Insights into an Eukaryotic Alga that Lives by the Sea
The genome of Porphyra umbilicalis reveals the mechanisms by which it thrives in the int [more...]

Jul 21, 2017
Scaling Microbial Genomics Discoveries for Ecosystem Modeling
Nutrient availability in model wetlands helps regulate microbial metabolism and soil carbon cycl [more...]

Jul 05, 2017
Tiny Green Algae Reveal Large Genomic Variation
First complete picture of genetic variations in a natural algal population could help explain how [more...]

Jul 05, 2017
New Technology Illuminates Microbial Dark Matter
Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs show [more...]

Jun 23, 2017
First Snapshot of a Bacterial Microcompartment’s Protein Shell
Reveals construction principles for nanobioreactor.  The Science more...]