U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Microbial Community Interactions Drive Methane Consumption in Lakes
Published: December 27, 2016
Posted: January 24, 2017

Diverse microbial communities consume methane produced as a byproduct during decomposition of plant matter in lake sediments. Image courtesy of iStock

Understanding interactions among organisms in complex microbial communities sheds new light on globally significant environmental processes.

The Science  
Large amounts of methane, a potent greenhouse gas, are produced as a byproduct during decomposition of plant matter in the sediments of lakes and wetlands. Bacteria known as methanotrophs consume much of this methane before it can enter atmosphere. In a recent study, researchers examined community interactions among methanotrophs and other types of microbes that control this important process.

The Impact
The biological mechanisms underlying many important environmental processes can be understood only by examining cooperative processes performed by diverse communities of microbes. This study uses an elegantly constructed model experiment and genomic analysis to examine the genetic basis of these interactions and determine how they influence microbial consumption of methane in lake sediments.

Summary
Several decades of research have demonstrated the importance of bacterial methanotrophs in carbon cycling processes of lakes, wetlands, and a variety of other environments. However, methanotrophs exist as members of diverse communities of regularly co-occurring non-methanotrophic microbes, and the roles of these organisms in methane cycling are not well understood. In a recent study, researchers at the University of Washington assembled an experimental model community of methanotrophs and associated non-methanotrophic microbes previously isolated from lake sediments. Using a community-scale metaomics analysis of shifts in gene expression, the team tracked how the associated organisms influenced each other during methane-driven growth. The presence of non-methanotrophs was shown to trigger an enzymatic and metabolic shift in the methanotrophs, resulting in conversion of a portion of the available methane into methanol, which was released to fuel the growth of these microbes. Not yet clear is if the methanotrophs derive some form of reciprocal benefit from this “cross-feeding,” or if this represents a type of parasitism. In either case, these findings considerably alter current understanding of methanotrophy as it occurs in complex environmental communities and suggest that much remains to be learned about the basic biological mechanisms driving an important element of the global carbon cycle.

Contacts (BER PM)
Dr. Joseph Graber
DOE Office of Biological and Environmental Research, Biological Systems Science Division
joseph.graber@science.doe.gov

(PI Contact)
Dr. Mary Lidstrom
University of Washington
lidstrom@u.washington.edu

Funding
This study was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science program under award DE-SC-0010556.

Publication
S. M. B. Krause, T. Johnson, Y. S. Karunaratne, Y. Fu, D. A. C. Beck, L. Chistoserdova, and M. E. Lidstrom, “Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions.” Proceedings of the National Academy of Sciences (USA) 114(2), 358-63 (2017). DOI: 10.1073/pnas.1619871114. (Reference link)

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)