U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Underutilized Soil Respiration Data Offer Novel Ways to Constrain and Improve Models
Published: November 16, 2016
Posted: December 07, 2016

Scientists make a case for using soil respiration data to improve understanding and modeling of ecosystem- to global-scale carbon fluxes.

The Science 
Scientists have spent decades making measurements of soil respiration (RS), the flow of carbon dioxide from the soil to the atmosphere, but only recently have started to collect and synthesize this information. A recent reviewargues that these data offer untapped potential for better understanding the larger carbon cycle and improving the performance of ecosystem- to global-scale computer models.

The Impact
Soil respiration data can bring a range of benefits to model development, particularly with larger databases and improved data-sharing protocols that make RS data more robust and broadly available to the research community. These efforts can help usher in new global syntheses and spark progress in both measurement and modeling of biogeochemical cycles.

Model-data synthesis activities are increasingly important to understand the carbon and climate systems, but they only rarely have used RS data. In an invited review, Department of Energy researchers at Pacific Northwest National Laboratory and co-authors argue that overlooking RS data is a mistake and identify three major challenges in interpreting and using RS data more extensively and creatively. First, when RS is compared to ecosystem respiration measured from eddy covariance towers, it is not uncommon to find the former to be larger, which is impossible. This finding is most likely because of difficulties in calculating ecosystem respiration, which provides an opportunity to utilize RS for eddy covariance quality control. Second, RS integrates belowground heterotrophic and autotrophic activity (i.e., from plant- and animal-derived carbon), and opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Finally, RS is generally measured at a different resolution than that needed for comparison to eddy covariance or ecosystem- to global-scale models. Downscaling these fluxes to match the scale of RS, and improving RS upscaling techniques, will improve resolution challenges.

Contacts (BER PM)
Dan Stover and Jared DeForest
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov, Jared.DeForest@science.doe.gov

(PI Contact)
Ben Bond-Lamberty
Pacific Northwest National Laboratory

ARD acknowledges support from the National Science Foundation (NSF) Advances in Biological Informatics. Funding for AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. RV acknowledges support from the U.S. Department of Agriculture. Ben Bond-Lamberty was supported by the U.S. Department of Energy, Office of Science, Terrestrial Ecosystem Science program. Katherine Todd-Brown was supported by the Linus Pauling Distinguished Postdoctoral Fellowship program, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. JT was supported by NSF, University of Chicago, and MBL Lillie Research Innovation Award.

Phillips, C. L., B. Bond-Lamberty, A. R. Desai, M. Lavoie, D. Risk, J. Tang, K. Todd-Brown, and R. Vargas. 2016. “The Value of Soil Respiration Measurements for Interpreting and Modeling Terrestrial Carbon Cycling,” Plant and Soil, DOI: 10.1007/s11104-016-3084-x. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)