BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Underutilized Soil Respiration Data Offer Novel Ways to Constrain and Improve Models
Published: November 16, 2016
Posted: December 07, 2016

Scientists make a case for using soil respiration data to improve understanding and modeling of ecosystem- to global-scale carbon fluxes.

The Science 
Scientists have spent decades making measurements of soil respiration (RS), the flow of carbon dioxide from the soil to the atmosphere, but only recently have they started to collect and synthesize this information. A recent review argues that these data offer untapped potential for better understanding the larger carbon cycle and improving the performance of ecosystem- to global-scale computer models.

The Impact
Soil respiration data can bring a range of benefits to model development, particularly with larger databases and improved data-sharing protocols that make RS data more robust and broadly available to the research community. These efforts can help usher in new global syntheses and spark progress in both measurement and modeling of biogeochemical cycles.

Summary
Model-data synthesis activities are increasingly important to understand the carbon and climate systems, but only rarely have they used RS data. In an invited review, U.S. Department of Energy researchers at Pacific Northwest National Laboratory and co-authors argue that overlooking RS data is a mistake and identify three major challenges in interpreting and using RS data more extensively and creatively. First, when RS is compared to ecosystem respiration measured from eddy covariance towers, it is not uncommon to find the former to be larger, which is impossible. This finding is most likely because of difficulties in calculating ecosystem respiration, which provides an opportunity to utilize RS for eddy covariance quality control. Second, RS integrates belowground heterotrophic and autotrophic activity (i.e., from plant- and animal-derived carbon), and opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Finally, RS is generally measured at a different resolution than that needed for comparison to eddy covariance or ecosystem- to global-scale models. Downscaling these fluxes to match the scale of RS, and improving RS upscaling techniques, will improve resolution challenges.

Contacts
BER Program Manager
Dan Stover and Jared DeForest
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov, Jared.DeForest@science.doe.gov

Principal Investigator
Ben Bond-Lamberty
Pacific Northwest National Laboratory
Richland, WA 99354
bondlamberty@pnnl.gov

Funding
ARD acknowledges support from the National Science Foundation (NSF) Advances in Biological Informatics. Funding for AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. RV acknowledges support from the U.S. Department of Agriculture. Ben Bond-Lamberty was supported by the U.S. Department of Energy, Office of Science, Terrestrial Ecosystem Science program. Katherine Todd-Brown was supported by the Linus Pauling Distinguished Postdoctoral Fellowship program, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. JT was supported by NSF, University of Chicago, and Marine Biological Laboratory's Lillie Research Innovation Award.

Publications
Phillips, C.L., B. Bond-Lamberty, A.R. Desai, M. Lavoie, D. Risk, J. Tang, K. Todd-Brown, and R. Vargas. “The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling.” Plant and Soil (in press, 2016) 413, 1–25 (2017). [DOI:10.1007/s11104-016-3084-x].

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)