BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Belowground Perspective On Forest Drought
Published: September 13, 2016
Posted: November 22, 2016

Subsurface interactions between roots and soils offer improved predictions for managing climate change impacts.

The Science
Key data on root distributions and soil water potential from prior Department of Energy–funded precipitation manipulations on the Oak Ridge Reservation (Tennessee) were used to illustrate mechanistic modeling needs. Results show challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity and provide a belowground perspective on drought that may facilitate improved forest management.

The Impact
The study highlights how a belowground perspective of drought can be used in climate models to reduce uncertainty in predicting ecosystem consequences of droughts in forests.

Summary
Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses. Less is known, however, regarding the dynamic interactions that occur belowground between roots and soil physical and biological factors. Consequently, better understanding is needed of how and why processes occurring belowground influence forest sensitivity to drought. This study reviews what is known about tree species’ belowground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Findings show how a belowground perspective of drought can be used in models to reduce uncertainty in predicting ecosystem consequences of droughts in forests. Additionally, the researchers describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity and explain how a belowground perspective on drought may facilitate improved forest management.

Contacts
BER Program Managers
Daniel Stover and Jared DeForest
SC-23.1
Daniel.Stover@science.doe.gov; Jared.DeForest@science.doe.gov

Principal Investigator
Dr. Paul J. Hanson
Oak Ridge National Laboratory, Climate Change Science Institute
Oak Ridge, TN 37831
hansonpj@ornl.gov

Funding
The project is supported by the Office of Biological and Environmental Research, within the U.S. Department of Energy (DOE) Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under Contract No. DE-AC05-00OR22725.

Publications
Phillips, R. P., I. Ibanez, L. D’Orangeville, P.J. Hanson, M.G. Ryan, and N. McDowell. “A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation.” Forest Ecology & Management 380, 309–320 (2016). [DOI:10.1016/j.foreco.2016.08.043]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)