U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Characterizing Peatland Uptake and Losses of Carbon
Published: August 20, 2016
Posted: November 22, 2016

Community-level flux methods provide a foundation for understanding bog carbon cycle warming responses.

The Science 
Researchers evaluated seasonal patterns of net carbon dioxide (CO2) and methane (CH4) flux from an experimental bog in northern Minnesota to establish a baseline for whole-ecosystem warming studies.

The Impact
Community-level methods were developed and shown capable of quantifying the net flux of the important greenhouse gases CO2 and CH4 in a raised bog setting to capture heterogeneous conditions. These methods enable intact assessments of net ecosystem exchange of carbon from the bog community in a manner that does not disturb the experimentally manipulated plots.

Summary
Evaluation of the net carbon flux from peatlands under a warming global climate is key to the projection of future greenhouse gas emissions to the atmosphere. The method developed in this study, as part of the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment, enabled these measurements as well as an estimation of seasonal carbon flux of CO2 and CH4 for a temperate bog ecosystem.

Contacts (BER PM)
Daniel Stover and Jared DeForest
SC-23.1
Daniel.Stover@science.doe.gov

(PI Contact)
Paul J. Hanson
hansonpj@ornl.gov

Funding
This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science program; and Graduate Fellowship Program (DE-AC05-06OR23100 to A. L. G.).

Publication
Hanson, P. J., A. L. Gill, X. Xu, J. R. Phillips, D. J. Weston, R. K. Kolka, J. S. Riggs, and L. A. Hook. 2016. “Intermediate Scale Community-Level Flux of CO2 and CH4 in a Minnesota Peatland: Putting the SPRUCE Project in a Global Context,” Biogeochemistry 129(3), 255-72. DOI: 10.1007/s10533-016-0230-8. (Reference link)

Related Link
SPRUCE

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Spruce and Peatland Responses Under Changing Environments (SPRUCE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)