U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Bacterial Protein Shows Promise for Efficiently Converting Plant Biomass to Biofuels
Published: August 23, 2016
Posted: November 15, 2016

A glycoside hydrolase protein is highly effective at breaking down rigid plant cell wall components and could be used to develop more efficient strategies for converting plant biomass to fuels and chemicals. [Image courtesy Department of Energy Environmental Molecular Sciences Laboratory]

Enzyme has the highest known activity for hydrolyzing recalcitrant crystalline cellulose found in plant cell walls.

The Science
Glycoside hydrolases are microbial enzymes that play a key role in nutrient acquisition through the breakdown of cellulose—a major component of plant cell walls. A recent study showed that a protein from the bacterial glycoside hydrolase family 12 plays an unexpectedly important role in converting the hard-to-degrade crystalline form of cellulose and that it does so through a random mechanism unlike other hydrolases.

The Impact
The discovery of a glycoside hydrolase protein that is highly effective at breaking down rigid plant cell wall components could be harnessed to develop more efficient strategies for converting plant biomass to fuels and chemicals.

Summary
Microbes such as fungi and bacteria produce enzymes called glycoside hydrolases to acquire nutrients through the degradation of cellulose—carbohydrates that make up plant cell walls. Some of these enzymes are capable of breaking down the rigid, crystalline form of cellulose and, therefore, could be especially effective at efficiently converting tough plant biomass to fuels and chemicals. However, they have largely been studied in pure cultures of microorganisms, even though microorganisms break down cellulose as communities in the environment. To address this knowledge gap, a multi-institutional team of researchers led by scientists at the Department of Energy’s (DOE) Joint BioEnergy Institute (JBEI) combined comparative proteomics with biochemical measurements. They then assessed differences in glycoside hydrolases produced by diverse microbes in communities cultivated from green waste compost and grown on crystalline cellulose. The team used several mass spectrometry instruments at the Environmental Molecular Sciences Laboratory (EMSL) and high-throughput DNA sequencing technologies at the Joint Genome Institute, both of which are DOE Office of Science user facilities. Their analysis revealed that a glycoside hydrolase family 12 protein, produced by the bacterium Thermobispora bispora, plays a previously underappreciated important role in breaking down crystalline cellulose. The new findings suggest this protein could be especially effective at converting plant biomass to fuels and chemicals. More broadly, the study illustrates the power of comparative community proteomics to reveal novel insights into microbial proteins that could be harnessed for fuel production from renewable energy sources. This research represents collaboration among JBEI, Lawrence Berkeley National Laboratory, Sandia National Laboratories, Pacific Northwest National Laboratory, EMSL, and University of Applied Sciences Mannheim.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contacts
Steven Singer
Lawrence Berkeley National Laboratory/Joint BioEnergy Institute
SWSinger@lbl.gov

Errol (Robby) Robinson
Pacific Northwest National Laboratory
errol.robinson@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER). Furthermore, this work was performed under the Facilities Integrating Collaborations for User Science (FICUS) initiative and used resources at DOE’s Environmental Molecular Sciences Laboratory and Joint Genome Institute, which are DOE Office of Science user facilities sponsored by BER.

Publication
J. Hiras, Y. W. Wu, K. Deng, C. D. Nicora, J. T. Aldrich, D. Frey, S. Kolinko, E. W. Robinson, J. M. Jacobs, P. D. Adams, T. R. Northen, B. A. Simmons, and S. W. Singer, “Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis.” mBio 7(4), e01106-16 (2016). [DOI: 10.1128/mBio.01106-16]. (Reference link)

Related Links
Steve Singer bio
EMSL News

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.1 Climate and Environmental Sciences Division, BER,SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)