BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
Published: October 14, 2016
Posted: November 15, 2016

Capturing temporal and spatial variability in porewater chemistry under current conditions establishes a baseline for considering how concentrations, pools, and fluxes may change under future climate scenarios.

The Science
Researchers examined weekly to monthly variation in peat porewater chemistry [pH, cations, nutrients, and total organic carbon (TOC)] depth profiles in an experimental bog in northern Minnesota and compared this temporal variation to spatial (among plot) variation in chemistry.

The Impact
These data provide baseline information on porewater chemistry in the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experimental bog, highlighting the importance of collecting samples across both space and time. Capturing temporal and spatial variability is needed especially for solute pool and flux calculations and for parameterizing process-based models.

Summary
Research findings showed strong gradients in chemistry depth profiles. For example, ammonium increased and TOC decreased with depth, likely reflecting mineralization of deep peat or TOC. These depth profiles were also temporally dynamic, with ammonium, soluble reactive phosphorus, and potassium concentrations more temporally variable in near-surface porewater than deeper porewater; pH, calcium, and TOC concentrations were more temporally variable at deeper depths. When temporal variation in porewater chemistry at one location was compared to spatial variation in porewater chemistry across 17 locations (SPRUCE plots), findings showed that temporal variation in chemistry at one location was often greater than spatial variation in chemistry, especially in near-surface porewater. These results suggest that representative sampling of porewater requires measurements across both space and time.

Contacts 
BER Program Managers
Daniel Stover and Jared DeForest
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)
Jared.DeForest@science.doe.gov (301-903-1678)

Principal Investigator
Natalie Griffiths
Oak Ridge National Laboratory
Oak Ridge, TN 37831
griffithsna@ornl.gov

Funding
This research was part of the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project and supported by the Office of Biological and Environmental Research, within the U.S. Department of Energy Office of Science, and the Northern Research Station of the U.S. Department of Agriculture’s Forest Service.

Publication
Griffiths, N.A., and S.D. Sebestyen. “Dynamic vertical profiles of peat porewater chemistry in a northern Peatland.” Wetlands 36, 1119–30 (2016). [DOI:10.1007/s13157-016-0829-5]

Related Links
SPRUCE

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Spruce and Peatland Responses Under Changing Environments (SPRUCE)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)