U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
Published: October 14, 2016
Posted: November 15, 2016

Capturing temporal and spatial variability in porewater chemistry under current conditions establishes a baseline for considering how concentrations, pools, and fluxes may change under future climate scenarios.

The Science
Researchers examined weekly to monthly variation in peat porewater chemistry [pH, cations, nutrients, and total organic carbon (TOC)] depth profiles in an experimental bog in northern Minnesota and compared this temporal variation to spatial (among plot) variation in chemistry.

The Impact
These data provide baseline information on porewater chemistry in the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experimental bog, highlighting the importance of collecting samples across both space and time. Capturing temporal and spatial variability is needed especially for solute pool and flux calculations and for parameterizing process-based models.

Research findings showed strong gradients in chemistry depth profiles. For example, ammonium increased and TOC decreased with depth, likely reflecting mineralization of deep peat or TOC. These depth profiles were also temporally dynamic, with ammonium, soluble reactive phosphorus, and potassium concentrations more temporally variable in near-surface porewater than deeper porewater; pH, calcium, and TOC concentrations were more temporally variable at deeper depths. When temporal variation in porewater chemistry at one location was compared to spatial variation in porewater chemistry across 17 locations (SPRUCE plots), findings showed that temporal variation in chemistry at one location was often greater than spatial variation in chemistry, especially in near-surface porewater. These results suggest that representative sampling of porewater requires measurements across both space and time.

Contacts (BER PM)
Daniel Stover and Jared DeForest
Daniel.Stover@science.doe.gov, 301-903-0289; and Jared.DeForest@science.doe.gov, 301-903-1678

(PI Contact)
Natalie Griffiths
Oak Ridge National Laboratory
griffithsna@ornl.gov / 865-576-3457

This research was part of the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project and supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, and the Northern Research Station of the U.S. Department of Agriculture’s Forest Service.

Griffiths, N. A., and S. D. Sebestyen. 2016. “Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland,” Wetlands, DOI: 10.1007/s13157-016-0829-5. (Reference link)

Related Links

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Spruce and Peatland Responses Under Changing Environments (SPRUCE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)