U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Molecular Probes Developed for Mercury Methylating Genes
Published: July 15, 2016
Posted: November 07, 2016

New molecular tool probes for genes linked to toxic methylmercury. [Image courtesy Oak Ridge National Laboratory]

The new tools will enable researchers to more quickly detect and quantify microbes with these genes in the environment.

The Science
Researchers have developed deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) probes to not only identify microbes that carry the genes for mercury (Hg) methylation, but also to quantify the extent to which specific types of microbes contribute to the methylation process.

The Impact
The neurotoxin methylmercury (MeHg) poses a serious risk to human health. MeHg production in nature is associated with anaerobic microbes. The development of DNA and mRNA probes represents a substantial improvement over previous work to develop both qualitative and quantitative primers for Hg-methylating genes. These new primers take into consideration the different degrees of methylation potential for specific types of microbes, which ranges from ~10% in the Archaea to ~90% in some Deltaproteobacterial species. These findings will enable a more realistic understanding of possible MeHg generation levels that may occur in a given environment, with the resulting data enabling more accurate risk management assessments.

Two genes, hgcA and hgcB, are essential for microbial Hg methylation. Detecting and estimating their abundance in microbes in conjunction with quantifying Hg species and other geochemical factors is critical in determining potential hotspots of MeHg generation in at-risk environments. Scientists at Oak Ridge National Laboratory led a team that identified a broad range of degenerate polymerase chain reaction (PCR) primers spanning known hgcAB genes to determine the presence of both genes in diverse environments. These broad-range primers were tested against an extensive set of pure cultures with published genomes that are known to methylate mercury, including 13 Deltaproteobacteria, nine Firmicutes, and nine methanogenic Archaea. For all these types of microbes, the primers not only consistently identified the methylating genes, but they enabled the team to quantify the extent to which each type of microbe methylates Hg. Environmental samples were further used to validate the primers and determine corrective calculations for DNA extraction and PCR amplification efficiencies. Taken together, these findings will enable a more realistic picture of possible MeHg generation levels that may occur in a given environment.

Contact (BER PM)
Paul Bayer
DOE Office of Biological and Environmental Research
Paul.Bayer@science.doe.gov (301-903-5324)

(PI Contact)
Dwayne Elias
Oak Ridge National Laboratory
eliasda@ornl.gov (865-574-0956)

This research was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science, as part of the Mercury Science Focus Area project at Oak Ridge National Laboratory.

G. A. Christensen, A. M. Wymore, A. J. King, M. Podar, R. A. Hurt Jr., E. U. Santillan, A. Soren, C. C. Brandt, S. D. Brown, A. V. Palumbo, J. D. Wall, C. C. Gilmour, and D. A. Elias, “Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment.” Applied and Environmental Microbiology (2016). DOI:10.1128/ AEM.01271-16. (Reference link)

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)