U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Model Improved by Incorporating New Hypothesis for Vegetation Nutrient Limitation
Published: August 27, 2016
Posted: November 07, 2016

Low-cost experiment provides first robust test of alternative hypotheses regarding short-term vegetation response to chronic nutrient limitation.

The Science
An innovative and low-cost field experiment provided new results regarding the fundamental process of photosynthetic carbon uptake in the face of varying levels of nutrient limitation. Experimental results refute the current modeling approach for instantaneous downregulation of carbon uptake and support a new hypothesis for long-term storage and release of excess carbon.

The Impact
This new hypothesis has a significant impact on seasonal cycle of atmospheric carbon dioxide (CO2), an important performance metric for global carbon cycle models. The fate of excess carbon can have significant impact on other ecosystem processes.

Summary
Models predicting ecosystem CO2 exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. This work demonstrated a rapid and cost-effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. Findings showed that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen fertilization. The lack of any clear short-term NEE response to fertilization in such a nitrogen-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support—diversion of excess carbon to storage compounds—into an existing Earth system model brings the model output into closer agreement with the field measurements. A global simulation incorporating this modified model reduced a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO2 exchange in a changing climate.

Contacts (BER PM)
Dorothy Koch, Daniel Stover, and Jared DeForest
Dorothy.Koch@science.doe.gov (301-903-0105), Daniel.Stover@science.doe.gov (301-903-0289), and Jared.DeForest@science.doe.gov (301-903-1678)

PI Contact
Peter E. Thornton
Environmental Sciences Division and Climate Change Science Institute
Oak Ridge National Laboratory
thorntonpe@ornl.gov (865-241-3742)

Funding
This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Earth System Modeling (ACME project) and Oak Ridge National Laboratory Terrestrial Ecosystem Science Scientific Focus Area.

Publication
Metcalfe, D. B., D. Ricciuto, S. Palmroth, C. Campbell, V. Hurry, J. Mao, S. G. Keel, S. Linder, X. Shi, T. Näsholm, K. E. A. Ohlsson, M. Blackburn, P. E. Thornton, and R. Oren. 2016. “Informing Climate Models with Rapid Chamber Measurements of Forest Carbon Uptake,” Global Change Biology, DOI: 10.1111/gcb.13451. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)