U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Freezing Sea Spray Aerosols to Study Their Natural State
Published: January 15, 2016
Posted: November 01, 2016

A new method preserves sea spray aerosols for studying their natural structure.

The Science
Scientists can now trap sea spray aerosols in their natural state and accurately characterize their particle structure using a new microscopy approach.

The Impact
This approach will enable scientists to more easily investigate the influence of sea spray aerosols on climate and the environment.

Sea spray aerosols are a highly complex mixture of sea salt and organic components that are generated through wave action and bubble bursting where the air and sea meet. Obtaining detailed information about the structure and composition of these aerosols is crucial for understanding their role in cloud formation and their influence on climate. However, studying sea spray aerosols using conventional electron microscopy requires high-vacuum conditions that alter aerosol structure and prevent scientists from characterizing the natural configuration of these particles in the atmosphere. To address this problem, a team of researchers from the University of California, San Diego; Department of Energy’s (DOE) Environmental Molecular Sciences Laboratory (EMSL); and University of Iowa developed a new approach that used cryogenic transmission electron microscopy. This approach involved flash freezing sea spray aerosol particles to preserve their natural configuration and then studying their structure with electron microscopy. The researchers used the environmental transmission electron microscope and scanning/transmission electron microscope at EMSL, a DOE user facility. Using this unique approach, the team of researchers was able to detect mixed salts and soft materials characterized by distinct biological, chemical, and physical processes. The researchers also demonstrated this approach could be used to study chemical and morphological changes that occur when particles are exposed to various environmental conditions, such as changing humidity. The ability to trap aerosols under environmentally relevant conditions will open new avenues for addressing many important questions about the chemical complexity and structure of aerosol particles and how they impact climate and the environment.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
James Evans
Environmental Molecular Sciences Laboratory

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory, a DOE user facility; the National Science Foundation; and National Institutes of Health.

Patterson, J. P., D. B. Collins, J. M. Michaud, J. L. Axson, C. M. Sultana, T. Moser, A. C. Dommer, J. Conner, V. H. Grassian, M. D. Stokes, G. B. Deane, J. E. Evans, M. D. Burkart, K. A. Prather, and N. C. Gianneschi. 2016. “Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy,” ACS Central Science 2(1), 40-47. DOI: 10.1021/acscentsci.5b00344. (Reference link)

Related Links
EMSL highlight

Topic Areas:

  • Research Area: Atmospheric System Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)