BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Metabolic Handoffs Among Microbial Community Members Drive Biogeochemical Cycles
Published: October 24, 2016
Posted: October 27, 2016

Tree showing all of bacterial diversity that is now represented by genomes, with the major lineages indicated by wedges. Research on the microbiology of the Rifle aquifer has provided new genomic information within previously identified groups (black wedges). In addition, many major bacterial groups were first identified and via study of the Rifle site (red and purple wedges). Red wedges indicate many major lineages that were first identified in the current study. Colored dots indicate the genomically predicted roles of members of these newly defined bacterial lineages in geochemical cycling. Remarkably, few major bacterial lineages have not been genomically sampled at this site (olive green wedges). [Image courtesy of Anantharaman et al. 2016. DOI: 10.1038/ncomms13219. Reprinted under CC by 4.0.]

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system.

The Science
2,540 genomes that represent the majority of known bacterial phyla and 47 new phylum-level lineages were reconstructed from sediment and groundwater collected from a semi-arid floodplain near Rifle, CO. Analyses showed that inter-organism interactions are required to turn the carbon, sulfur and nitrogen biogeochemical cycles and revealed that complex patterns of community assembly are likely key to ecosystem functioning and resilience.

The Impact
The research almost doubled the number of major bacterial groups and provided detailed information about the ecosystem roles of organisms from these groups. The research dramatically increased understanding of subsurface biology and motivates new approaches to ecosystem modeling. The genomes represent a treasure-trove that will be mined for biotechnology.

Summary
The subterranean world hosts up to one fifth of all biomass, including microbial communities that drive transformations central to Earth’s biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Terabase-scale cultivation-independent metagenomics was applied to aquifer sediments and groundwater and 2,540 high-quality near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla were constructed.  Some of these genomes derive from 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system were used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, it was shown that few organisms within the community conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

BER PM Contact
David Lesmes, SC-23.1, 301-903-2977

Contact
Susan Hubbard
Lawrence Berkeley National Laboratory
sshubbard@lbl.gov

Funding: This work was supported by Lawrence Berkeley National Laboratory’s Sustainable Systems Scientific Focus Area funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research.  Terabase-scale sequencing critical for this work was provided by the Joint Genome Institute via Community Science Program allocations.

Publication
K. Anantharaman, C. T. Brown, L. A. Hug, I.Sharon, C. J. Castelle, A. J. Probst, B. C. Thomas, A. Singh, M. J. Wilkins, U. Karaoz, E. L. Brodie, K. H. Williams, S. S. Hubbard, and J. F. Banfield. “Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system”. Nature Communications 7, ncomms13219 (2016). [DOI: 10.1038/ncomms13219]. (Reference link)

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)